一、选择与填空

11级

1、设P(A) = 0.5,P(AB) = 0.2,则 $P(B|A) = ____$ 。

1、设A,B,C为随机事件,则下列选项中一定正确的是_____

(A) 若P(A) = 0,则A为不可能事件

(B) 若A与B相互独立,则A与B互不相容

(C) 若 A 与 B 互不相容,则 P(A) = 1 - P(B)

(D) 若 $P(AB) \neq 0$, 则P(BC|A) = P(B|A)P(C|BA)

10 级

1. 若A, B为两个随机事件,则下列选项中正确的是。

(A) $(A \cup B) - B = A$

(B) $(A \cup B) - B = B$

(C) $\lceil (A \cup B) - B \rceil \subset A$

(D) $\lceil (A \cup B) - B \rceil \supset A$

1. 某人向同一目标独立重复进行射击,每次射击命中的概率为 $p(0 ,则此人第 4 次射击恰好是第 2 次命中目标的概率为____。$

2. 在[0,1] 中随机取数 x ,在[1,2] 中随机取数 y ,则事件 $\left\{x+y \ge \frac{3}{2}\right\}$ 的概率为_____。

09级

1.10 件产品中有 8 件正品, 2 件次品, 任选两件产品, 则恰有一件为次品的概率为 .

2. 在区间(0,1)中随机地取两个数,则事件 $\{ 两数之和大于 \frac{4}{5} \}$ 的概率为_____.

1. 设 A, B 为 两 个 随 机 事 件 , 若 事 件 A, B 的 概 率 满 足 0 < P(A) < 1 , 0 < P(B) < 1 , 且 有 等 式

 $P(A|B) = P(A|\bar{B})$ 成立,则事件A,B_____.

(A) 互斥

(B) 对立

(C) 相互独立

(D) 不独立

08 级

1、某人忘记了电话号码的最后一个数字,因而随意拨号,则拨号不超过三次而接通电话的概率为_____

(A) $\frac{1}{10}$

(B) $\frac{3}{10}$

(C) $\frac{9}{10}$

 $(D) \frac{1}{8}$

1、在区间[0,L]之间随机地投两点,则两点间距离小于 $\frac{L}{2}$ 的概率为____。

07级

1、10把钥匙中有3把能打开门锁,今任取两把钥匙,则打不开门锁的概率为。

2、在区间(0,1)之间随机地取两个数,则事件 $\{$ 两数的最大值大于 $\frac{2}{3}\}$ 发生的概率为____。

二、计算与应用

11级

有两个盒子,第一个盒子装有 2 个红球 1 个黑球,第二个盒子装有 2 个红球 2 个黑球,现从这两个盒子中各任取一球放在一起,再从中任取一球。

(1) 求这个球是红球的概率;

(2) 重复上述过程 10 次,记 X 表示出现取出的球为红球的次数,求 $E(X^2)$ 。

- 1. 己知 A, B 为两个随机事件,且 $P(A) = \frac{1}{2}$, $P(B) = \frac{3}{5}$, $P(B|A) = \frac{4}{5}$, 求:
 - (1) $P(A \cup B)$; (2) P(A B); (3) $P[\overline{B} | (A \cup B)]$.

09级

- 1. 设 A,B 为两个随机事件,且有 $P(\overline{A}) = 0.4, P(B) = 0.4, P(\overline{B}|A) = 0.5$,计算:
- (1) P(A); (2) P(AB); (3) $P(\overline{B}|(A \cup B))$.

08级

- 1、设A,B为两个事件, $P(\overline{A})=0.3$,P(B)=0.4, $P(A\overline{B})=0.5$,求:

- (1) P(A); (2) P(AB); (3) $P(B|(A \cup \overline{B}))$.

07级

- 2、设 A, B, C 为三个事件,且 $P(A) = P(B) = P(C) = \frac{1}{3}$, P(AB) = 0 , $P(AC) = \frac{1}{6}$, $P(BC) = \frac{1}{8}$, \Re :
- (1) P(C|A); (2) $P(C|\overline{B})$; (3) A,B,C 至少有一个发生的概率。

2、设随机变量 X 服从正态分布 $N(\mu,\sigma^2)$, F(x) 为其分布函数,则对任意实数 a ,有 $F(\mu+a)+F(\mu-a)=$

10级

3. 设随机变量 X 与 Y 相互独立且服从同一分布: $P\{X=k\}=P\{Y=k\}=\frac{k+1}{3}$ (k=0,1),则概率 $P\{X=Y\}$ 的 值为_____。

08 级

2、设相互独立的两个随机变量 X , Y 的分布函数分别为 $F_{X}(X)$, $F_{Y}(Y)$, 则 $Z = \max(X,Y)$ 的分布函数是____。

(A)
$$F_Z(z) = \max\{F_X(z), F_Y(z)\}$$

(B)
$$F_Z(z) = \max\{|F_X(z)|, |F_Y(z)|\}$$

(C)
$$F_{z}(z) = F_{x}(z)F_{y}(z)$$

(D)
$$F_{z}(z) = F_{x}(x)F_{y}(y)$$

3、设随机变量 $X \sim N(1,4)$, $Y \sim N(0,1)$, 且 X 与 Y 相互独立,则____。

(A)
$$X - 2Y \sim N(1, 8)$$

(B)
$$X - 2Y \sim N(1, 6)$$

(C)
$$X - 2Y \sim N(1, 2)$$

(D)
$$X - 2Y \sim N(1, 1)$$

07级

1、已知随机变量 X 服从参数 n=2 , $p=\frac{1}{3}$ 的二项分布, F(x) 为 X 的分布函数,则 F(1.5)=____。

$$(A) \frac{1}{9}$$

(B)
$$\frac{4}{9}$$

(B)
$$\frac{4}{9}$$
 (C) $\frac{5}{9}$ (D) $\frac{8}{9}$

(D)
$$\frac{8}{9}$$

二、计算与应用

11级

1、已知随机变量 X 的概率密度函数为

$$f(x) = \begin{cases} \frac{1}{\pi\sqrt{1-x^2}}, & |x| < 1, \\ 0, & |x| \ge 1. \end{cases}$$

求: (1) X 的分布函数 F(x); (2) 概率 $P\left\{\left|x\right| < \frac{1}{2}\right\}$ 。

2、设连续型随机变量X的概率密度函数为

$$f(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & \text{ 其他.} \end{cases}$$

求随机变量 $Y = X^3$ 的概率密度函数。

- 2. 已知连续型随机变量 X 的概率密度函数 $f(x) = Ce^{-|x|} (-\infty < x < +\infty)$,求:
 - (1) 常数 C; (2) X 的分布函数 $F_X(x)$; (3) 概率 $P\{1 < X < 3\}$ 。

3. 设随机变量 X 在区间[0,2]上服从均匀分布,求随机变量 $Y = X^2$ 的概率密度函数 $f_Y(y)$ 。

09级

- 2. 设有三个盒子,第一个盒装有4个红球,1个黑球;第二个盒装有3个红球,2个黑球;第三个盒装有2个红球,3个黑球.若任取一盒,从中任取3个球。
- (1) 已知取出的 3 个球中有 2 个红球, 计算此 3 个球是取自第一箱的概率;
- (2) 以X表示所取到的红球数,求X的分布律;
- (3) 若 $Y = \sin \frac{\pi}{2} X$,求Y的分布律.

3. 设连续型随机变量X的分布函数为

$$F_X(x) = \begin{cases} 0, & x < 0, \\ a + bx^2, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

- (1) 求系数 a, b 的值及 X 的概率密度函数 $f_X(x)$;
- (2) 若随机变量 $Y = X^2$, 求Y的概率密度函数 $f_Y(y)$.

2、已知连续型随机变量X的分布函数为

$$F(x) = \begin{cases} 0, & x < 0 \\ cx^3, & 0 \le x < 1, \\ 1, & x \ge 1 \end{cases}$$

求: (1) 常数 c; (2) X 的概率密度函数; (3) 概率 $P\{-1 < X < \frac{1}{2}\}$ 。

3、设随机变量 X 服从标准正态分布 N(0,1) , 求随机变量 $Y=X^2$ 的概率密度函数 $f_Y(y)$ 。

07级

2、已知连续型随机变量X的分布函数为

$$F(x) = \begin{cases} 0, & x < -1 \\ a + b \arcsin x, & -1 \le x < 1, \\ 1, & x \ge 1 \end{cases}$$

求 (1) 常数 a 和 b; (2) X 的概率密度 f(x); (3) 概率 $P\{-2 < X < 0\}$ 。

解答: (1) 由于连续型随机变量的分布函数 F(x) 是连续函数,将 -1 和 1 代入 F(x) ,得到关于 a 和 b 的方程:

$$0 = F(-1) = a - \frac{\pi}{2}b$$
, $0 = F(1) = a + \frac{\pi}{2}b$

3、设随机变量 X 在区间 (1,2) 上服从均匀分布,求 $Y = e^{2X}$ 的概率密度 $f_{Y}(y)$ 。

一、选择与填空

11 级

3、设随机变量 X 与 Y 相互独立, X 在区间 [0,3] 上服从均匀分布, Y 服从参数为 2 的指数分布,则概率 $P\{\min(X,Y)>1\}=$ _____。

2、设随机变量 (X,Y) 服从二维正态分布,且 X 与 Y 不相关, $f_X(x)$ 、 $f_Y(y)$ 分别为 X、Y 的概率密度,则在 Y=y 条件下, X 的条件概率密度 $f_{X|Y}(x|y)$ 为____。

(A) $f_X(x)$

(B) $f_{y}(y)$

(C) $f_X(x)f_Y(y)$

(D) $\frac{f_X(x)}{f_Y(y)}$

10级

3. 设随机变量 X 与 Y 相互独立且都服从参数为 $\lambda(\lambda > 0)$ 的指数分布,则 $\min(X,Y)$ 服从____。

(A) 参数为 λ 的指数分布

- (B) 参数为2λ的指数分布
- (C) 参数为 $\frac{\lambda}{2}$ 的指数分布
- (D) $(0,\lambda)$ 上的均匀分布

二、计算与应用

11级

3、设二维随机变量 (X,Y) 的联合分布律为

X	-1	0	1
-1	0	1/4	0
0	1/4	0	1/4
1	0	1/4	0

(1) 求概率 $P\{|X| > |Y|\};$

(2) 求X与Y的相关系数 ρ_{XY} ,并讨论X与Y的相关性,独立性。

1、设二维随机变量(X,Y)的联合概率密度函数为

$$f(x, y) = \begin{cases} Axy, & 0 < y < x < 1, \\ 0, & \text{ 其他.} \end{cases}$$

求: (1) 常数 A;

- (2) (X,Y) 的边缘概率密度函数 $f_{y}(y)$;
- (3) 在Y = y的条件下,X的条件概率密度函数 $f_{X|Y}(x|y)$;
- (4) 条件概率 $P\{X < \frac{2}{3} | Y = \frac{1}{2} \}$ 。

1. 设二维随机变量 (X,Y) 的联合概率密度函数为

$$f(x,y) = \begin{cases} Ax^2y, & x^2 \le y \le 1\\ 0, & 其他 \end{cases}$$

- 求: (1) 常数 A;
 - (2) (X,Y) 的边缘概率密度函数 $f_Y(y)$;
 - (3) 在Y = y的条件下,X的条件概率密度函数 $f_{X|Y}(x|y)$;
 - (4) 条件概率 $P\{X \le 0 | Y = \frac{1}{2}\}$ 。

09级

1. 设二维随机变量(X,Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} e^{-x-y}, & x > 0, y > 0, \\ 0, & \text{ $\sharp \, \dot{\Xi}$.} \end{cases}$$

- (1) 求关于X 的边缘密度函数 $f_X(x)$;
- (2) 试判断 X 与 Y 是否相互独立?
- (3) 计算 $P\{X+Y<1\}$.

某次抽样调查结果表明,考生的外语成绩 X (百分制)近似服从正态分布 $X \sim N(72, \sigma^2)$,并且分数在 60 分至 84 分之间的考生人数占考生总数的 68.2%,试求考生的外语成绩在 96 分以上的概率.

X	0	1.0	2.0	3.0
$\Phi(x)$	0.500	0.841	0.977	0.999

1、设二维随机变量 (X,Y) 的联合概率密度函数为

$$f(x,y) = \begin{cases} \frac{1}{\pi}, & x^2 + y^2 < 1 \\ 0, & 其他 \end{cases}$$

求: (1) (X, Y) 的边缘概率密度函数 $f_{\scriptscriptstyle X}(x)$ 和条件概率密度 $f_{\scriptscriptstyle Y\mid X}(y\mid x)$;

- (2) 概率 $P\{Y > X\}$;
- (3) 随机变量 $Z = \sqrt{X^2 + Y^2}$ 的概率密度函数 $f_z(z)$ 。

07级

1、设二维随机变量 (X,Y) 的联合概率密度函数为

$$f(x,y) = \begin{cases} Ax, 0 < y < x < 1 \\ 0, \quad \text{其它} \end{cases}$$

求(1)常数 A;

- (2) (X, Y) 的边缘概率密度函数 $f_{Y}(y)$ 和条件概率密度函数 $f_{X|Y}(x|y)$;
- (3) 概率 $P\{X + Y < 1\}$ 。

第4章

一、选择与填空

11级

3、将一枚质量均匀对称的硬币独立地重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的 相关系数为____。

(A) 1

(B) -1

(C) 0

(D) 0.5

10级

2. 设随机变量 X 服从参数为 $\lambda(\lambda > 0)$ 的泊松分布,且 $P\{X = 1\} = P\{X = 2\}$,则 D(X + 1) 的值为___。

(A) 2

(B) 3

(C) $\frac{1}{4}$ (D) $\frac{5}{4}$

09级

2. 设 X 和 Y 为独立同分布的随机变量, X 的分布律为 $P\{X=0\}=\frac{1}{4}$, $P\{X=1\}=\frac{3}{4}$, 令随机变量 $Z = \max(X, Y)$, 则数学期望 E(Z) =____.

(A) $\frac{1}{4}$ (B) $\frac{3}{4}$ (C) $\frac{1}{16}$ (D) $\frac{15}{16}$

08 级

- 2、设随机变量 X 服从参数为 1 的泊松分布,则 $P\{X = E(X^2)\} =$ ____。
- 3、设随机变量 X 和 Y 的相关系数为 0.5, E(X) = E(Y) = 0 , $E(X^2) = E(Y^2) = 2$,则 $E[(X + Y)^2] =$ 07级
- 2、下面四个随机变量的分布中,期望最大,方差最小的是___。
 - (A) X 服从正态分布 $N(5, \frac{1}{2})$ (B) Y 服从均匀分布 U(5, 7)
 - (C) Z 服从参数为 $\frac{1}{6}$ 指数分布 (D) T 服从参数为 3 的泊松分布
- 3、若二维随机变量(X,Y)的相关系数 $\rho_{xy}=0$,则以下结论正确的是____。
 - (A) X 与 Y 相互独立
- (B) D(X+Y) = D(X) + D(Y)
- (C) X 与 Y 互不相容
- $(D) D(XY) = D(X) \cdot D(Y)$
- 3、设随机变量 X 服从参数为 λ 的指数分布,则 $P\{X > \sqrt{DX}\}=$

二、计算与应用

10级

将2封信随机地投入2个邮筒,设随机变量X,Y分别表示投入第1个和第2个邮筒的信的数目,试求:

- (1) (X,Y) 的联合分布; (2) X 的数学期望 E(X) 及方差 D(X);
- (3) (X,Y) 的相关系数 ρ ; (4) 判断 X,Y 是否不相关. 是否相互独立。

09级

4. 设随机变量 X 与 Y 的相关系数 $\rho = 1/4$, D(X) = D(Y) = 1 , 令 U = X + Y , V = X + aY , 且 U 与 V不相关, 求常数 a.

2、设随机变量 X_1 和 X_2 的分布律为

X_1	-1	0	1
p	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

并且 $P\{X_1X_2=0\}=1$ 。

- (1) 求 X_1 , X_2 的数学期望以及方差;
- (2) 求(X_1, X_2)的联合分布律;

万元,问该企业每天至少应生产多少产品?

- (3) 求 X_1 , X_2 的协方差;
- (4) 判断 X_1 , X_2 是否不相关,是否独立。

X_2	0	1
p	$\frac{1}{2}$	$\frac{1}{2}$

设某企业生产线上产品的合格率为 0.96,不合格品中只有 $\frac{3}{4}$ 的产品可进行再加工,且再加工的合格率为 0.8,其余均为废品。已知每件合格品可获利 80 元,每件废品亏损 20 元,为保证该企业每天平均利润不低于 2

2、设二维随机变量(X,Y)的概率分布为

X	0	1	$P\{X=x_i\}$
-1		0.64	
0	0.04		
$P\{Y=y_j\}$		0.8	1

- (1) 请将上表空格处填全;
- (2) 求X, Y的数学期望以及方差EX、EY、DX、DY;
- (3) 求 X , Y 的协方差 $\mathrm{cov}(X,Y)$ 以及相关系数 ρ_{xy} ,并判断 X,Y 是否不相关,是否独立;
- (4) 记Z = X + Y, 求Z的概率分布, 并求 $P\{X = Z\}$ 。

07级

已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取2件产品放入乙箱后,求:

- (1) 从乙箱中任取一件产品是次品的概率;
- (2) 乙箱中次品件数的数学期望。

三、证明

10 级

1. 设随机变量 X 与 Y 的相关系数为 ρ ,且满足 D(X)=D(Y) ,令 U=X+Y , V=X-Y ,证明 : U 与 V 不相关 。

08 级

证明在一次试验中,事件 A 发生的次数 X 的方差 $D(X) \leq \frac{1}{4}$ 。

1、设X为连续型随机变量,且数学期望 $E(e^{X^2})$ 存在,证明:对于任意正数 ε ,有 $P\{|X| \ge \varepsilon\} \le \frac{E(e^{X^2})}{e^{\varepsilon^2}}$ 。

第5章

一、选择与填空

11级

4、设随机变量 X 服从参数为 2 的泊松分布,用契比雪夫不等式估计 $P\{-2 < X < 6\} ≥ ______。$

10级

4. 设随机变量 X 的数学期望为 μ ,方差为 σ^2 ,则由契比雪夫不等式可知概率 $P\{|X-\mu|\geq 3\sigma\}\leq$ _____。

09级

- 3. 设随机变量 X 的方差为 25,则根据契比雪夫不等式 $P\{X E(X) | < 10\} \ge ____$.
- 3. 设 $X_1, X_2, \cdots, X_n, \cdots$ 是独立同分布的随机变量序列,且服从参数为 λ ($\lambda > 0$) 的泊松分布,记 $\Phi(x)$ 为标准正 态分布的分布函数,则必成立

$$(A) \lim_{n \to \infty} P \left\{ \frac{\sum_{i=1}^{n} X_{i} - n\lambda}{\lambda \sqrt{n}} \le x \right\} = \Phi(x) \qquad (B) \lim_{n \to \infty} P \left\{ \frac{\sum_{i=1}^{n} X_{i} - n\lambda}{\sqrt{\lambda n}} \le x \right\} = \Phi(x)$$

$$(C) \lim_{n \to \infty} P \left\{ \frac{\lambda \sum_{i=1}^{n} X_{i} - n}{\sqrt{n}} \le x \right\} = \Phi(x) \qquad (D) \lim_{n \to \infty} P \left\{ \frac{\sum_{i=1}^{n} X_{i} - \lambda}{\sqrt{\lambda n}} \le x \right\} = \Phi(x)$$

08级

4、设 X_1, X_2, \dots, X_{10} 为来自总体X的简单随机样本,且 $E(X) = \mu$,D(X) = 8, $\bar{X} = \frac{1}{10} \sum_{i=1}^{10} X_i$,利用契比雪夫 不等式估计 $P\{\mu-4 < \overline{X} < \mu+4\} \ge$

07级

4、已知随机变量 X 的数学期望 EX = 5,方差 DX = 4,则由契比雪夫不等式可 知概率 $P{2 < X < 8}$ _____

$$(A) \ge \frac{4}{9}$$
 $(B) \le \frac{4}{9}$ $(C) \ge \frac{5}{9}$ $(D) \le \frac{5}{9}$ $(B) \le \frac{5}{9}$

一、选择与填空

5、设 X_1,X_2,\cdots,X_n 是来自正态总体 $N(\mu,\sigma^2)$ 的容量为n的简单随机样本, S^2 为样本方差,则 $E(S^2)=$ _____。

10级

4. 设 X_1, X_2, \cdots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本, \overline{X} 表示样本均值, S^2 表示样本方差,则下列 选项中错误的是____。

(A)
$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$
 (B) $\frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n)$ (C) $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ (D) \overline{X} 与 S^2 相互独立

(C)
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
 (D) $\overline{X} \ni S^2$ 相互独立

09级

4. 设总体 X 服从二项分布 B(n,p) , X_1,X_2,\cdots,X_n 是来自总体 X 的简单随机样本, \overline{X} 为样本均值,则 $D(\overline{X})$

为_____.

08 级

4、设 X_1,X_2,\cdots,X_n ($n\geq 2$)为来自总体N(0,1)的简单随机样本, \overline{X} 为样本均值, S^2 为样本方差,则_____。

(A)
$$n\overline{X} \sim N(0,1)$$

(B)
$$nS^2 \sim \chi^2(n)$$

$$(C) \ \frac{(n-1)\overline{X}}{S} \sim t(n-1)$$

(D)
$$\frac{(n-1)X_1^2}{\sum_{i=2}^n X_i^2} \sim F(1, n-1)$$

07级

4、设 (X_1, X_2, X_3, X_4) 是来自正态总体 $N(0, \sigma^2)$ 的简单随机样本,若统计量 $Z = \frac{C(X_1 + X_2)}{\sqrt{X_3^2 + X_4^2}}$ 服从t分布,

则常数 $C = ____$ 。

三、证明

11 级 设 X_1, X_2, \cdots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本,若 \overline{X} 表示样本均值, S^2 表示样本方差,记 $Y = n(\frac{\overline{X} - \mu}{S})^2$,证明: $Y \sim F(1, n-1)$ 。

10级

2. 设 X_1, X_2, \cdots, X_n 是来自总体X的简单随机样本且 $E(X) = \mu$, $D(X) = \sigma^2$, \overline{X} 表示样本均值, S^2 表示样本方差,记 $T = \overline{X}^2 - \frac{1}{n}S^2$,证明: $E(T) = \mu^2$ 。

09级

1. 设 X_1, X_2, \cdots, X_8 和 Y_1, Y_2, \cdots, Y_{10} 为分别来自两个正态分布总体 $N(-1, 2^2)$ 及 $N(2, 5^2)$ 的简单随机样本,且相互独立, S_1^2 与 S_2^2 分别为两个样本方差,试证明: 统计量 $\frac{25S_1^2}{4S_2^2}$ 服从 F(7,9) 分布.

08级

1、设随机变量 X 服从 t(n) 分布, 求证: $\frac{1}{X^2}$ 服从 F(n,1) 分布。

一、选择与填空

11级

4、设总体 X 服从正态分布 $N(\mu, \sigma^2)$,其中 σ^2 已知,若已知样本容量和置信度 $1-\alpha$ 均不变,则对于不同的样本 观测值,总体均值 μ 的置信区间的长度_____

(A) 变长

(B) 变短

(C) 不变

(D) 不能确定

10级

5. 设 X_1, X_2, \cdots, X_n 是来自正态总体 $N(\mu, 1)$ 的简单随机样本,建立总体X的数学期望 μ 的置信度为 0.95 的置 信区间,则当样本容量为 16 时,置信区间的长度 $L = _____$ 。(已知 $\Phi(1.645) = 0.95$, $\Phi(1.96) = 0.975$)

09级

5. 设总体 X 服从参数为 λ 的泊松分布, X_1,X_2,X_3 是来自总体 X 的简单随机样本,且统计量 $\hat{\lambda} = aX_1 + \frac{1}{2}X_2 + \frac{1}{2}X_3$ 是 λ 的一个无偏估计量,则常数 a =____.

4. 设 $X_1, X_2, \cdots X_n$ 是来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本,其中 σ^2 已知, μ 为未知参数,记 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, 则 μ 的置信度为 0.95 的置信区间是_

(A)
$$\left(\overline{X} - 1.96 \frac{\sigma}{\sqrt{n}}, \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}}\right)$$

(A)
$$\left(\overline{X} - 1.96 \frac{\sigma}{\sqrt{n}}, \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}}\right)$$
 (B) $\left(\overline{X} - 0.975 \frac{\sigma}{\sqrt{n}}, \overline{X} + 0.975 \frac{\sigma}{\sqrt{n}}\right)$

(C)
$$\left(\overline{X} - 1.28 \frac{\sigma}{\sqrt{n}}, \overline{X} + 1.28 \frac{\sigma}{\sqrt{n}}\right)$$

$$(C) \left(\overline{X} - 1.28 \frac{\sigma}{\sqrt{n}}, \overline{X} + 1.28 \frac{\sigma}{\sqrt{n}} \right) \qquad (D) \left(\overline{X} - 0.90 \frac{\sigma}{\sqrt{n}}, \overline{X} + 0.90 \frac{\sigma}{\sqrt{n}} \right)$$

(其中 $\Phi(x)$)为标准正态分布的分布函数, $\Phi(1.96) = 0.975$, $\Phi(1.28) = 0.900$)

08级

5、设总体 X 服从正态分布 $N(\mu,1)$, 从中随机地抽取 25 个样本,则 μ 的置信度为 0.95 的置信区间的长度 (已知 $\Phi(1.96) = 0.975$, $\Phi(1.645) = 0.95$, 其中 $\Phi(x)$ 为标准正态分布的分布函数)

07级

5、已知一批零件的长度 X (单位: cm) 服从正态分布 $N(\mu,1)$, 从中随机地抽取 16 个零件,得到长度的平均值为 40 (cm),则 μ 的置信度为 0.95 的置信区间为

(已知 $\Phi(1.96) = 0.975$, $\Phi(1.645) = 0.95$, 其中 $\Phi(x)$ 为标准正态分布的分布函数)

二、计算与应用

11级

2、设总体 X 服从0-1分布,分布律为

/ 3			
	X	1	0
	p	p	1-p

其中p为未知参数, X_1, X_2, \cdots, X_n 是取自X的简单随机样本。

- 求: (1) p 的矩估计量 \hat{p}_1 ;
 - (2) p 的极大似然估计量 \hat{p}_2 ;
 - (3) 判断 \hat{p}_1 、 \hat{p}_2 是否为 p 的无偏估计。

4. 设总体 X 的概率分布为

其中 θ (0 < θ < $\frac{1}{2}$) 是未知参数,利用总体X的如下样本值:3, 1, 3, 0, 3, 1, 2, 3, 求:(1) θ 的矩估计值;(2) 极 大似然估计值。

09级

2. 已知总体 X 的概率密度函数为

$$f(x;\theta) = \begin{cases} \theta x^{\theta-1}, & 0 \le x \le 1, \\ 0, & 其它. \end{cases}$$

其中 $\theta>0$ 为未知参数,设 X_1,X_2,\cdots,X_n 是来自总体 X 的简单随机样本,试求:

(1) θ 的矩估计量; (2) θ 的极大似然估计量.

08级

3、已知总体 X 的概率密度函数为

$$f(x;\alpha,\beta) = \begin{cases} \beta \alpha^{\beta} x^{-\beta-1}, & x > \alpha \\ 0, & x \le \alpha \end{cases}$$

其中 $\alpha > 0, \beta > 1$ 为未知参数, X_1, X_2, \dots, X_n 为来自总体X的简单随机样本。求:

- (1) 当 $\alpha = 1$ 时, β 的矩估计量;
- (2) 当 $\beta = 2$ 时, α 的极大似然估计量。

3、设随机变量X的概率密度函数为

$$f(x,\theta) = \begin{cases} \frac{\theta}{x^{\theta+1}}, & x > 1, \\ 0, & x \le 1, \end{cases}$$

其中 $\theta>1$ 为未知参数. 设 X_1,X_2,\cdots,X_n 为来自总体X 的简单随机样本,求 θ 的矩估计量以及极大似然估计量。

07级

2、设随机变量 X 的数学期望为 μ ,方差为 σ^2 , $\left(X_1,X_2,\cdots,X_n\right)$ 是来自总体 X 的简单随机样本,证明: $S^2 = \frac{1}{n-1}\sum_{i=1}^n \left(X_i - \overline{X}\right)^2$ 是 σ^2 的无偏估计。

第8章

一、选择与填空

11级

5、设 X_1, X_2, \cdots, X_n 是来自正态总体 $N(\mu, 2^2)$ 的简单随机样本,样本容量n=16,样本均值为 \overline{X} ,则在显著性水平 $\alpha=0.05$ 下检验假设 $H_0: \mu=5; H_1: \mu\neq 5$ 的拒绝域为____。(已知 $\Phi(1.645)=0.95$, $\Phi(1.96)=0.975$,其中 $\Phi(x)$ 为标准正态分布的分布函数)

(A)
$$\left\{ \left| \overline{X} - 5 \right| \ge 0.98 \right\}$$

(B)
$$\{ |\bar{X} - 5| \le 0.98 \}$$

(C)
$$\{|\bar{X} - 5| \ge 0.82\}$$

(D)
$$\{ |\bar{X} - 5| \le 0.82 \}$$

10级

5. 设 X_1, X_2, \cdots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本,若进行假设检验,当_____时,一般采用统计

- (A) μ 已知,检验 $\sigma^2 = \sigma_0^2$
- (B) μ 未知,检验 $\sigma^2 = \sigma_0^2$
- (C) σ^2 已知,检验 $\mu = \mu_0$
- (D) σ^2 未知,检验 $\mu = \mu_0$

09级

5. 设 X_1, X_2, \cdots, X_n 为来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本,现进行假设检验,当在以下____情形时,一般 采用统计量 $T = \frac{X - \mu_0}{S/\sqrt{n}}$.

- (A) μ 未知,检验 $\sigma^2 = \sigma_0^2$
- (B) μ 已知,检验 $\sigma^2 = \sigma_0^2$
- (C) σ^2 未知,检验 $\mu = \mu_0$ (D) σ^2 已知,检验 $\mu = \mu_0$

08级

5、设正态总体 $N(\mu, \sigma^2)$ 的双边检验 $H_0: \mu = \mu_0$, $H_1: \mu \neq \mu_0$, σ^2 已知,显著性水平为 α ,则 H_0 的拒绝域

(A)
$$\left| \overline{X} - \mu_0 \right| > \frac{\sigma}{\sqrt{n}} Z_o$$

(A)
$$\left| \overline{X} - \mu_0 \right| > \frac{\sigma}{\sqrt{n}} Z_{\alpha}$$
 (B) $\left| \overline{X} - \mu_0 \right| > \frac{\sigma}{\sqrt{n}} Z_{\frac{\alpha}{2}}$

(C)
$$\left| \overline{X} - \mu_0 \right| > \frac{S}{\sqrt{n}} t_{\alpha} (n-1)$$

(C)
$$\left| \overline{X} - \mu_0 \right| > \frac{S}{\sqrt{n}} t_{\alpha}(n-1)$$
 (D) $\left| \overline{X} - \mu_0 \right| > \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1)$

07级

5、对正态总体的数学期望 μ 进行假设检验,如果在显著水平 0.05 下接受 H_0 : $\mu = \mu_0$,那么在显著水平 0.01 下, 下列结论中正确的是___。

(A) 必接受 H_a

(B) 可能接受,也可能拒绝 H_a

(C) 必拒绝 H。

(D) 不接受,也不拒绝 H_a

第 10 章

11级

- 3、设随机过程 X(t) = Rt + C, $-\infty < t < +\infty$, 其中 C 为常数, R 服从 (0,1) 区间上的均匀分布。
- (1) 求 $\{X(t), -\infty < t < +\infty\}$ 的均值函数和相关函数;
- (2) 求 $\{X(t), -\infty < t < +\infty\}$ 的协方差函数、方差函数和均方值函数;
- (3) 判断 $\{X(t), -\infty < t < +\infty\}$ 是否为平稳过程?

- 2. 设随机过程 $X(t)=A+Bt, -\infty < t < +\infty$,其中 A 和 B 是相互独立的随机变量,且均值是 0,方差是____。
- (1) 求 $\{X(t), -\infty < t < +\infty\}$ 的均值函数和相关函数;
- (2) 求 $\{X(t), -\infty < t < +\infty\}$ 的协方差函数. 方差函数和均方值函数;
- (3) 判断 $\{X(t), -\infty < t < +\infty\}$ 是否为平稳过程,并说明理由。

09级

- 3. 设随机过程 $X(t) = a\cos(\omega t + \Theta)$, $-\infty < t < +\infty$, 其中 a 和 ω 是常数, Θ 是服从 $[0,2\pi]$ 上均匀分布的随机变量.
- (1) 求 $\{X(t), -\infty < t < +\infty\}$ 的均值函数和相关函数;
- (2) 求 $\{X(t), -\infty < t < +\infty\}$ 的协方差函数、方差函数和均方值函数;
- (3) 判断 $\{X(t), -\infty < t < +\infty\}$ 是否为平稳过程?

2. 设随机过程 $\{X(t), t \in [a,b]\}$ 是正交增量过程,且X(a) = 0,试证明:

 $R_{x}(s,t) = \Phi_{x}(\min(s,t)), \ s,t \in [a,b].$