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Preface

Operating systems are an essential part of any computer system. Similarly,
a course on operating systems is an essential part of any computer-science
education. This field is undergoing rapid change, as computers are now
prevalent in virtually every application, from games for children through the
most sophisticated planning tools for governments and multinational firms.
Yet the fundamental concepts remain fairly clear, and it is on these that we base
this book.

We wrote this book as a text for an introductory course in operating systems
at the junior or senior undergraduate level or at the first-year graduate level.
We hope that practitioners will also find it useful. It provides a clear description
of the concepts that underlie operating systems. As prerequisites, we assume
that the reader is familiar with basic data structures, computer organization,
and a high-level language, such as C. The hardware topics required for an
understanding of operating systems are included in Chapter 1. For code
examples, we use predominantly C, with some Java, but the reader can still
understand the algorithms without a thorough knowledge of these languages.

Concepts are presented using intuitive descriptions. Important theoretical
results are covered, but formal proofs are omitted. The bibliographical notes
contain pointers to research papers in which results were first presented and
proved, as well as references to material for further reading. In place of proofs,
figures and examples are used to suggest why we should expect the result in
question to be true.

The fundamental concepts and algorithms covered in the book are often
based on those used in existing commercial operating systems. Our aim
is to present these concepts and algorithms in a general setting that is
not tied to one particular operating system. We present a large number of
examples that pertain to the most popular and the most innovative operating
systems, including Sun Microsystems’ Solaris; Linux; Mach; Microsoft MS-DOS,
Windows NT, Windows 2000, and Windows XP; DEC VMS and TOPS-20;1BM 0S/2;
and Apple Mac OS X.

In this text, when we refer to Windows XP as an example operating system,
we are implying both Windows XP and Windows 2000. If a feature exists in
Windows XP that is not available in Windows 2000, we will state this explicitly.
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viii Preface

If a feature exists in Windows 2000 but not in Windows XP, then we wil refer
specifically to Windows 2000.

Organization of This Book

The organization of this text reflects our many years of teaching operating
systems courses. Consideration was also given to the feedback provided by
the reviewers of the text, as well as comments submitted by readers of earlier
editions. In addition, the content of the text corresponds to the suggestions
from Computing Curricula 2001 for teaching operating systems, published by
the Joint Task Force of the IEEE Computing Society and the Association for
Computing Machinery (ACM).

On the supporting web page for this text, we provide several sample syllabi
that suggest various approaches for using the text in both introductory and
advanced operating systems courses. As a general rule, we encourage readers
to progress sequentially through the chapters, as this strategy provides the
most thorough study of operating systems. However, by using the sample
syllabi, a reader can select a different ordering of chapters (or subsections of
chapters).

Content of This Book

The text is organized in eight major parts:

e Overview. Chapters 1 and 2 explain what operating systems are, what
they do, and how they are designed and constructed. They discuss what the
common features of an operating system are, what an operating system
does for the user, and what it does for the computer-system operator. The
presentation is motivational and explanatory in nature. We have avoided a
discussion of how things are done internally in these chapters. Therefore,
they are suitable for individual readers or for students in lower-level classes
who want to learn what an operating system is without getting into the
details of the internal algorithms.

¢ Process management. Chapters 3 through 7 describe the process concept
and concurrency as the heart of modern operating systems. A process
is the unit of work in a system. Such a system consists of a collection
of concurrently executing processes, some of which are operating-system
processes (those that execute system code) and the rest of which are user
processes (those that execute user code). These chapters cover methods for
process scheduling, interprocess communication, process synchronization,
and deadlock handling. Also included under this topic is a discussion of
threads.

e Memory management. Chapters 8 and 9 deal with main memory man- -
agement during the execution of a process. To improve both the utilization
of the CPU and the speed of its response to its users, the computer must
keep several processes in memory. There are many different memory-
management schemes, reflecting various approaches to memory man-
agement, and the effectiveness of a particular algorithm depends on the
situation.
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XP, FreeBSD, Mach, and Windows 2000. We chose Linux and FreeBSD
because UNIX—at one time—was almost small enough to understand
yet was not a “toy” operating system. Most of its internal algorithms were
selected for simplicity, rather than for speed or sophistication. Both Linux
and FreeBSD are readily available to computer-science departments, so
many students have access to these systems. We chose Windows XP and
Windows 2000 because they provide an opportunity for us to study a .
modern operating system with a design and implementation drastically
different from those of UNIX. Chapter 23 briefly describes a few other
influential operating systems.

Operating-System Environments

This book uses examples of many real-world operating systems to illustrate
fundamental operating-system concepts. However, particular attention is paid
to the Microsoft family of operating systems (including Windows NT, Windows
2000, and Windows XP) and various versions of UNIX (including Solaris, BSD,
and Mac 0S X). We also provide a significant amount of coverage of the Linux
operating system reflecting the most recent version of the kernel — Version 2.6
~-at the time this book was written.

The text also provides several example programs written in C and

Java. These programs are intended to run in the following programming
environments:

¢ Windows systems. The primary programming environment for Windows

systems is the Win32 API (application programming interface), which pro-
vides a comprehensive set of functions for managing processes, threads,
memory, and peripheral devices. We provide several C programs illustrat-
ing the use of the Win32 APL. Example programs were tested on systems
running Windows 2000 and Windows XP.

POSIX. POSIX (which stands for Portable Operating System Interface) repre-
sents a set of standards implemented primarily for UNIX-based operating
systems. Although Windows XP and Windows 2000 systems can also run
certain POSIX programs, our coverage of POSIX focuses primarily on UNIX
and Linux systems. POSIX-compliant systems must implement the POSIX
core standard (POSIX.1)—Linux, Solaris, and Mac OS X are examples of
POSIX-compliant systems. POSIX also defines several extensions to the
standards, including real-time extensions (POSIX1.b) and an extension for
a threads library (POSIX1.c, better known as Pthreads). We provide several
programming examples written in C illustrating the POSIX base AP, as well
as Pthreads and the extensions for real-time programming. These example
programs were tested on Debian Linux 2.4 and 2.6 systems, Mac OS X, and

Solaris 9 using the gcc 3.3 compiler. "

¢ Java. Java is a widely used programming language with a rich API and

built-in language support for thread creation and management. Java
programs run on any operating system supporting a Java virtual machine
(or JVM). We illustrate various operating system and networking concepts
with several Java programs tested using the Java 1.4 JVM.
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We have chosen these three programming environments because it,is our
opinion that they best represent the two most popular models of operating
systems: Windows and UNIX/Linux, along with the widely used Java environ-
ment. Most programming examples are written in C, and we expect readers to
be comfortable with this language; readers familiar with both the C and Java
languages should easily understand most programs provided in this text.

In some instances—such as thread creation—we illustrate a specific
concept using all three programming environments, allowing the reader "
to contrast the three different libraries as they address the same task. In
other situations, we may use just one of the APIs to demonstrate a concept.
For example, we illustrate shared memory using just the POSIX API; socket
programming in TCP/IP is highlighted using the Java APL

The Seventh Edition

As we wrote this seventh edition of Operating System Concepts, we were guided
by the many comments and suggestions we received from readers of our
previous editions, as well as by our own observations about the rapidly
changing fields of operating systems and networking. We have rewritten the
material in most of the chapters by bringing older material up to date and
removing material that was no longer of interest or relevance.

We have made substantive revisions and organizational changes in many of
the chapters. Most importantly, we have completely reorganized the overview
material in Chapters 1 and 2 and have added two new chapters on special-
purpose systems (real-time embedded systems and multimedia systems).
Because protection and security have become more prevalent in operating
systems, we now cover these topics earlier in the text. Moreover, we have
substantially updated and expanded the coverage of security.

Below, we provide a brief outline of the major changes to the various
chapters:

® Chapter 1, Introduction, has been totally revised. In previous editions, the
chapter gave a historical view of the development of operating systems.
The new chapter provides a grand tour of the major operating-system
components, along with basic coverage of computer-system organization.

® Chapter 2, Operating-System Structures, is a revised version of old
Chapter 3, with many additions, including enhanced discussions of system
calls and operating-system structure. It also provides significantly updated
coverage of virtual machines.

o Chapter 3, Processes, is the old Chapter 4. It includes new coverage of how
processes are represented in Linux and illustrates process creation using
both the POSIX and Win32 APIs. Coverage of shared memory is enhanced -
with a program illustrating the shared-memory API available for POSIX
systems.

¢ Chapter4, Threads, is the old Chapter 5. The chapter presents an enhanced
discussion of thread libraries, including the POSIX, Win32 API, and Java
thread libraries. It also provides updated coverage of threading in Linux.



xii

Preface

Chapter 5, CPU Scheduling, is the old Chapter 6. The chapter offers a
significantly updated discussion of scheduling issues for multiprocessor
systems, including processor affinity and load-balancing algorithms. It
also features a new section on thread scheduling, including Pthreads, and
updated coverage of table-driven scheduling in Solaris. The section on
Linux scheduling has been revised to cover the scheduler used in the 2.6
kernel.

Chapter 6, Process Synchronization, is the old Chapter 7. We have
removed the coverage of two-process solutions and now discuss only
Peterson’s solution, as the two-process algorithms are not guaranteed to
work on modern processors. The chapter also includes new sections on
synchronization in the Linux kernel and in the Pthreads APIL

Chapter 7, Deadlocks, is the old Chapter 8. New coverage includes
a program example illustrating deadlock in a multithreaded Pthread
program.

Chapter 8, Main Memory, is the old Chapter 9. The chapter no longer
covers overlays. In addition, the coverage of segmentation has seen sig-
nificant modification, including an enhanced discussion of segmentation
in Pentium systems and a discussion of how Linux is designed for such
segmented systems.

Chapter 9, Virtual Memory, is the old Chapter 10. The chapter features
expanded coverage of motivating virtual memory as well as coverage
of memory-mapped files, including a programming example illustrating
shared memory (via memory-mapped files) using the Win32 APL. The
details of memory management hardware have been modernized. A new
section on allocating memory within the kernel discusses the buddy
algorithm and the slab allocator.

Chapter 10, File-System Interface, is the old Chapter 11. It has been
updated and an example of Windows XP ACLs has been added.

Chapter 11, File-System Implementation, is the old Chapter 12. Additions
include a full description of the WAFL file system and inclusion of Sun’s
ZFS file system.

Chapter 12, Mass-Storage Structure, is the old Chapter 14. New is the
coverage of modern storage arrays, including new RAID technology and
features such as thin provisioning.

Chapter 13, /0O Systems, is the old Chapter 13 updated with coverage of
new material.

Chapter 14, Protection, is the old Chapter 18 updated with coverage of the
principle of least privilege.

Chapter 15, Security, is the old Chapter 19. The chapter has undergone -
a major overhaul, with all sections updated. A full example of a buffer-
overflow exploit is included, and coverage of threats, encryption, and
security tools has been expanded.

Chapters 16 through 18 are the old Chapters 15 through 17, updated with
coverage of new material.
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e Chapter 19, Real-Time Systems, is a new chapter focusing on real-time
and embedded computing systems, which have requirements different
from those of many traditional systems. The chapter provides an overview
of real-time computer systems and describes how operating systems must
be constructed to meet the stringent timing deadlines of these systems.

o Chapter20, Multimedia Systems, is anew chapter detailing developments
in the relatively new area of multimedia systems. Multimedia data differ .
from conventional data in that multimedia data—such as frames of video
—must be delivered (streamed) according to certain time restrictions. The
chapter explores how these requirements affect the design of operating
systems.

e Chapter 21, The Linux System, is the old Chapter 20, updated to reflect
changes in the 2.6 kernel—the most recent kernel at the time this text was
written.

e Chapter 22, XP, has been updated.
e Chapter 22, Influential Operating Systems, has been updated.

The old Chapter 21 (Windows 2000) has been turned into Appendix C. As in
the previous edition, the appendices are provided online.

Programming Exercises and Projects

To emphasize the concepts presented in the text, we have added several
programming exercises and projects that use the POSIX and Win32 APlsas well
as Java. We have added over 15 new programming exercises that emphasize
processes, threads, shared memory, process synchronization, and networking.
In addition, we have added several programming projects which are more
involved than standard programming exercises. These projects include adding
a system call to the Linux kernel, creating a UNIX shell using the fork () system
call, a multithreaded matrix application, and the producer-consumer problem
using shared memory.

Teaching Supplements and Web Page

The web page for the book contains such material as a set of slides to accompany
the book, model course syllabi, all C and Java source code, and up-to-date
errata. The web page also contains the book’s three case-study appendices and
the Distributed Communication appendix. The URL is:

http:/ /www.os-book.com

New to this edition is a print supplement called the Student Solutions
Manual. Included are problems and exercises with solutions not found in
the text that should help students master the concepts presented. You can
purchase a print copy of this supplement at Wiley’s website by going to
http:/ /www.wiley.com/college/silberschatz and choosing the Student Solu-
tions Manual link.



xiv Preface

To obtainrestricted supplements, such as the solution guide to the exercises
in the text, contact your local John Wiley & Sons sales representative. Note that
these supplements are avaialble only to faculty who use this text. You can
find your representative at the "Find a Rep?” web page: http://www.jsw-
edcv.wiley.com/college/findarep.

Mailing List

We have switched to the mailman system for communication among the users
of Operating System Concepts. If you wish to use this facility, please visit the
following URL and follow the instructions there to subscribe:

http://mailman.cs.yale.edu/mailman/listinfo / os-book-list

The mailman mailing-list system provides many benefits, such as an archive
of postings, as well as several subscription options, including digest and Web
only. To send messages to the list, send e-mail to:

0s-book-list@cs.yale.edu

Depending on the message, we will either reply to you personally or forward
the message to everyone on the mailing list. The list is moderated, so you will
receive no inappropriate mail.

Students who are using this book as a text for class should not use the list
to ask for answers to the exercises. They will not be provided.

Suggestions

We have attempted to clean up every error in this new edition, but—as
happens with operating systems—a few obscure bugs may remain. We would
appreciate hearing from you about any textual errors or omissions that you
identify.

If you would like to suggest improvements or to contribute exercises,
we would also be glad to hear from you. Please send correspondence to
os-book@cs.yale.edu.
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Part One

9 ¥

AN operating system acts as an intermediary between the user of a
computer and the computer hardware. The purpose of an operating
system is to provide an environment in which a user can execute
programs in a convenient and efficient manner.

An operating system is software that manages the computer hard-
ware. The hardware must provide appropriate mechanisms to ensure the
correct operation of the computer system and to prevent user programs
from interfering with the proper operation of the system.

Internally, operating systems vary greatly in their makeup, since they
are organized along many different lines. The design of a new operating
system is a major task. It is important that the goals of the system be well
defined before the design begins. These goals form the basis for choices
among various algorithms and strategies.

Because an operating systemiis large and complex, it must be created
piece by piece. Each of these pieces should be a well delineated portion
of the system, with carefully defined inputs, outputs, and functions.
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An operating system is a program that manages the computer hardware. It
also provides a basis for application programs and acts as an intermediary
between the computer user and the computer hardware. An amazing aspect
of operating systems is how varied they are in accomplishing these tasks.
Mainframe operating systems are designed primarily to optimize utilization
of hardware. Personal computer (PC) operating systems support complex
games, business applications, and everything in between. Operating systems
for handheld computers are designed to provide an environment in which a
user can easily interface with the computer to execute programs. Thus, some
operating systems are designed to be convenient, others to be efficient, and others
some combination of the two.

Before we can explore the details of computer system operation, we need
to know something about system structure. We begin by discussing the basic
functions of system startup, 1/0, and storage. We also describe the basic
computer architecture that makes it possible to write a functional operating
system.

Because an operating system is large and complex, it must be created
piece by piece. Each of these pieces should be a well-delineated portion of the
system, with carefully defined inputs, outputs, and functions. In this chapter we
provide a general overview of the major components of an operating system.

CHAPTER OBJECTIVES

¢ To provide a grand tour of the major operating systems components.
» To provide coverage of basic computer system organization..

What Operating Systems Do

We begin our discussion by looking at the operating system’s role in the
overall computer system. A computer system can be divided roughly into
four components: the hardware, the operating system, the application programs,
and the users (Figure 1.1).
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In other cases, a user sits at a terminal connected to a mainframe or
minicomputer. Other users are accessing the same computer through other
terminals. These users share resources and may exchange information. The
operating system in such cases is designed to maximize resource utilization—
to assure that all available CPU time, memory, and 1/0 are used efficiently and
that no individual user takes more than her fair share.

In still other cases, users sit at workstations connected to networks of
other workstations and servers. These users have dedicated resources at their
disposal, but they also share resources such as networking and servers—file,
compute, and print servers. Therefore, their operating system is designed to
compromise between individual usability and resource utilization.

Recently, many varieties of handheld computers have come into fashion.
Most of these devices are standalone units for individual users. Some are
connected to networks, either directly by wire or (more often) through wireless
modems and networking. Because of power, speed, and interface limitations,
they perform relatively few remote operations. Their operating systems are
designed mostly for individual usability, but performance per amount of
battery life is important as well.

Some computers have little or no user view. For example, embedded
computers in home devices and automobiles may have numeric keypads and
may turn indicator lights on or off to show status, but they and their operating
systems are designed primarily to run without user intervention.

1.1.2 System View

From the computer’s point of view, the operating system is the program
most intimately involved with the hardware, In this context, we can view
an operating system as a resource allocator. A computer system has many
resources that may be required to solve a problem: CPU time, memory space,
file-storage space, I/0 devices, and so on. The operating system acts as the
manager of these resources. Facing numerous and possibly conflicting requests
for resources, the operating system must decide how to allocate them to specific
programs and users so that it can operate the computer system efficiently and
fairly. As we have seen, resource allocation is especially important where many
users access the same mainframe or minicomputer.

A slightly different view of an operating system emphasizes the need to
control the various 1/0 devices and user programs. An operating system is a
control program. A control program manages the execution of user programs
to prevent errors and improper use of the computer. It is especially concerned
with the operation and control of 1/0 devices.

1.1.3 Defining Operating Systems

We have looked at the operating system'’s role from the views of the user
and of the system. How, though, can we define what an operating system
is? In general, we have no completely adequate definition of an operating
system. Operating systems exist because they offer a reasonable way to solve
the problem of creating a usable computing system. The fundamental goal
of computer systems is to execute user programs and to make solving user
problems easier. Toward this goal, computer hardware is constructed. Since
bare hardware alone is not particularly easy to use, application programs are
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developed. These programs require certain common operations, such as those
controlling the 1/0 devices. The common functions of controlling and allocating
resources are then brought together into one piece of software: the operating
system.

In addition, we have no universally accepted definition of what is part of the
operating system. A simple viewpoint is that it includes everything a vendor
ships when you order “the operating system.” The features included, however,
vary greatly across systems. Some systems take up less than 1 megabyte of
space and lack even a full-screen editor, whereas others require gigabytes of
space and are entirely based on graphical windowing systems. (A kilobyte, or
KB, is 1,024 bytes; a megabyte, or MB, is 1,0242 bytes; and a gigabyte, or GB, is
1,024% bytes. Computer manufacturers often round off these numbers and say
that a megabyte is 1 million bytes and a gigabyte is 1 billion bytes.) A more
common definition is that the operating system is the one program running
at all times on the computer (usually called the kernel), with all else being
systems programs and application programs. This last definition is the one
that we generally follow.

The matter of what constitutes an operating system has become increas-
ingly important. [n 1998, the United States Department of Justice filed suit
against Microsoft, in essence claiming that Microsoft included too much func-
tionality in its operating systems and thus prevented application vendors from
competing. For example, a web browser was an integral part of the operating
system. As a result, Microsoft was found guilty of using its operating system
monopoly to limit competition.

Computer-System Organization

Before we can explore the details of how computer systems operate, we need
a general knowledge of the structure of a computer system. In this section, we
look at several parts of this structure to round out our background knowledge.
The section is mostly concerned with computer-system organization, so you
can skim or skip it if you already understand the concepts.

1.2.1 Computer-System Operation

A modern general-purpose computer system consists of one or more CPUs
and a number of device controllers connected through a common bus that
provides access to shared memory (Figure 1.2). Each device controller is in
charge of a specific type of device (for example, disk drives, audio devices, and
video displays). The CPU and the device controllers can execute concurrently,
competing for memory cycles. To ensure orderly access to the shared memory,
a memory controller is provided whose function is to synchronize access to the
memory.

For a computer to start running—for instance, when it is powered
up or rebooted—it needs to have an initial program to run. This initial
program, or bootstrap program, tends to be simple. Typically, it is stored
in read-only memory (ROM) or electrically erasable programmable read-only
memory (EEPROM), known by the general term firmware, within the computer
hardware. It initializes all aspects of the system, from CPU registers to device
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The straightforward method for handling this transfer would be to invoke a
generic routine to examine the interrupt information; the routine, in turn,
would call the interrupt-specific handler. However, interrupts must be handled
quickly. Since only a predefined number of interrupts is possible, a table of
pointers to interrupt routines can be used instead to provide the necessary
speed. The interrupt routine is called indirectly through the table, with no
intermediate routine needed. Generally, the table of pointers is stored in low
memory (the first 100 or so locations). These locations hold the addresses of
the interrupt service routines for the various devices. This array, or interrupt
vector, of addresses is then indexed by a unique device number, given with
the interrupt request, to provide the address of the interrupt service routine for
the interrupting device. Operating systems as different as Windows and UNIX
dispatch interrupts in this manner.

The interrupt architecture must also save the address of the interrupted
instruction. Many old designs simply stored the interrupt address in a
fixed location or in a location indexed by the device number. More recent
architectures store the return address on the system stack. If the interrupt
routine needs to modify the processor state—for instance, by modifying
register values—it must explicitly save the current state and then restore that
state before returning. After the interrupt is serviced, the saved return address
is loaded into the program counter, and the interrupted computation resumes
as though the interrupt had not occurred.

1.2.2 Storage Structure

Computer programs must be in main memory (also called random-access
memory or RAM) to be executed. Main memory is the only large storage area
(millions to billions of bytes) that the processor can access directly. It commonly
is implemented in a semiconductor technology called dynamic random-access
memory (DRAM), which forms an array of memory words. Each word has its
own address. Interaction is achieved through a sequence of load or store
instructions to specific memory addresses. The 1oad instruction moves a word
from main memory to an internal register within the CPU, whereas the store
instruction moves the content of a register to main memory. Aside from explicit
loads and stores, the CPU automatically loads instructions from main memory
tor execution.

A typical instruction—execution cycle, as executed on a system with a von
Neumann architecture, first fetches an instruction from memory and stores
that instruction in the instruction register. The instruction is then decoded
and may cause operands to be fetched from memory and stored in some
internal register. After the instruction on the operands has been executed, the
result may be stored back in memory. Notice that the memory unit sees only
a stream of memory addresses; it does not know how they are generated (by
the instruction counter, indexing, indirection, literal addresses, or some other -
means) or what they are for (instructions or data). Accordingly, we can ignore
how a memory address is generated by a program. We are interested only in
the sequence of memory addresses generated by the running program.

Ideally, we want the programs and data to reside in main memory
permanently. This arrangement usually is not possible for the following two
reasons:
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1. Main memory is usually too small to store all needed programs and data
permanently.

2. Main memory is a volatile storage device that loses its contents when
power is turned off or otherwise lost.

Thus, most computer systems provide secondary storage as an extension
of main memory. The main requirement for secondary storage is that it be able
to hold large quantities of data permanently.

The most common secondary-storage device is a magnetic disk, which
provides storage for both programs and data. Most programs (web browsers,
compilers, word processors, spreadsheets, and so on) are stored on a disk until
they are loaded into memory. Many programs then use the disk as both a source
and a destination of the information for their processing. Hence, the proper
management of disk storage is of central importance to a computer system, as
we discuss in Chapter 12.

In a larger sense, however, the storage structure that we have described —
consisting of registers, main memory, and magnetic disks—is only one of many
possible storage systems. Others include cache memory, CD-ROM, magnetic
tapes, and so on. Each storage system provides the basic functions of storing
a datum and of holding that datum until it is retrieved at a later time. The
main differences among the various storage systems lie in speed, cost, size,
and volatility.

The wide variety of storage systems in a computer system can be organized
in a hierarchy (Figure 1.4) according to speed and cost. The higher levels are
expensive, but they are fast. As we move down the hierarchy, the cost per bit

Figure 1.4 Siorage-device hierarchy.
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generally decreases, whereas the access time generally increases. This trade-off
is reasonable; if a given storage system were both faster and less expensive
than another—other properties being the same—then there would be no
reason to use the slower, more expensive memory. In fact, many early storage
devices, including paper tape and core memories, are relegated to museums
now that magnetic tape and semiconductor memory have become faster and
cheaper. The top four levels of memory in Figure 1.4 may be constructed using
semiconductor memory.

In addition to differing in speed and cost, the various storage systems
are either volatile or nonvolatile. As mentioned earlier, volatile storage loses
its contents when the power to the device is removed. In the absence of
expensive battery and generator backup systems, data must be written to
nonvolatile storage for safekeeping. In the hierarchy shown in Figure 1.4, the
storage systems above the electronic disk are volatile, whereas those below
are nonvolatile. An electronic disk can be designed to be either volatile or
nonvolatile. During normal operation, the electronic disk stores data in a
large DRAM array, which is volatile. But many electronic-disk devices contain
a hidden magnetic hard disk and a battery for backup power. If external
power is interrupted, the electronic-disk controller copies the data from RAM
to the magnetic disk. When external power is restored, the controller copies
the data back into the RAM. Another form of electronic disk is flash memory,
which is popular in cameras and personal digital assistants (PDAs), in robots,
and increasingly as removable storage on general-purpose computers. Flash
memory is slower than DRAM but needs no power to retainits contents. Another
form of nonvolatile storage is NVRAM, which is DRAM with battery backup
power. This memory can be as fast as DRAM but has a limited duration in
which it is nonvolatile.

The design of a complete memory system must balance all the factors just
discussed: It must use only as much expensive memory as necessary while
providing as much inexpensive, nonvolatile memory as possible. Caches can
be installed to improve performance where a large access-time or transfer-rate
disparity exists between two components.

1.2.3 1/0 Structure

Storage is only one of many types of 1/0 devices within a computer. A large
portion of operating system code is dedicated to managing 1/0, both because
of its importance to the reliability and performance of a system and because of
the varying nature of the devices. Therefore, we now provide an overview of
I/0.

A general-purpose computer system consists of CPUs and multiple device
controllers that are connected through a common bus. Each device controller
is in charge of a specific type of device. Depending on the controller, there may .
be more than one attached device. For instance, seven or more devices can be
attached to the small computer-systems interface (SCSI) controller. A device
controller maintains some local buffer storage and a set of special-purpose
registers. The device controller is responsible for moving the data between
the peripheral devices that it controls and its local buffer storage. Typically,
operating systems have a device driver for each device controller. This device
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Figure 1.5 How a modern computer system works.

driver understands the device controller and presents a uniform interface to
the device to the rest of the operating system.

To start an I/0 operation, the device driver loads the appropriate registers
within the device controller. The device controller, in turn, examines the
contents of these registers to determine what action to take (such as “read
a character from the keyboard”). The controller starts the transfer of data from
the device to its local buffer. Once the transfer of data is complete, the device
controller informs the device driver via an interrupt that it has finished its
operation. The device driver then returns control to the operating system,
possibly returning the data or a pointer to the data if the operation was a read.
For other operations, the device driver returns status information.

This form of interrupt-driven 170 is fine for moving small amounts of data
but can produce high overhead when used for bulk data movement such as disk
1/0. To solve this problem, direct memory access (DMA) is used. After setting
up buffers, pointers, and counters for the I/O device, the device controller
transfers an entire block of data directly to or from its own buffer storage to
memory, with no intervention by the CPU. Only one interrupt is generated per
block, to tell the device driver that the operation has completed, rather than
the one interrupt per byte generated for low-speed devices. While the device
controller is performing these operations, the CPU is available to accomplish
other work. o

Some high-end systems use switch rather than bus architecture. On these
systems, multiple components can talk to other components concurrently,
rather than competing for cycles on a shared bus. In this case, DMA is even
more effective. Figure 1.5 shows the interplay of all components of a computer
system.
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Computer-System Architecture :

In Section 1.2 we introduced the general structure of a typical computer system.
A computer system may be organized in a number of different ways, which we
can categorize roughly according to the number of general-purpose processors
used.

1.3.1 Single-Processor Systems

Most systems use a single processor. The variety of single-processor systems
may be surprising, however, since these systems range from PDAs through
mainframes. On a single-processor system, there is one main CPU capable
of executing a general-purpose instruction set, including instructions from
user processes. Almost all systems have other special-purpose processors as
well. They may come in the form of device-specific processors, such as disk,
keyboard, and graphics controllers; or, on mainframes, they may come in the
form of more general-purpose processors, such as 1/0 processors that move
data rapidly among the components of the system.

All of these special-purpose processors run a limited instruction set and
do not run user processes. Sometimes they are managed by the operating
system, in that the operating system sends them information about their next
task and monitors their status. For example, a disk-controller microprocessor
receives a sequence of requests from the main CPU and implements its own disk
queue and scheduling algorithm. This arrangement relieves the main CPU of
the overhead of disk scheduling. PCs contain a microprocessor in the keyboard
to convert the keystrokes into codes to be sent to the CPU. In other systems
or circumstances, special-purpose processors are low-level components built
into the hardware. The operating system cannot communicate with these
processors; they do their jobs autonomously. The use of special-purpose
microprocessors is common and does not turn a single-processor system into
a multiprocessor. If there is only one general-purpose CPU, then the system is
a single-processor system.

1.3.2 Multiprocessor Systems

Although single-processor systems are most common, multiprocessor systems
(also known as parallel systems or tightly coupled systems) are growing
in importance. Such systems have two or more processors in close commu-
nication, sharing the computer bus and sometimes the clock, memory, and
peripheral devices.

Multiprocessor systems have three main advantages:

1. Increased throughput. By increasing the number of processors, we expect
to get more work done in less time. The speed-up ratio with N processors
is not N, however; rather, it is less than N. When multiple processors
cooperate on a task, a certain amount of overhead is incurred in keeping
all the parts working correctly. This overhead, plus contention for shared
resources, lowers the expected gain from additional processors. Similarly,
N programmers working closely together do not produce N times the
amount of work a single programmer would produce.






14

Chapter1 Introduction

can run simultaneously—N processes can run if there are N CPUs—without
causing a significant deterioration of performance. However, we must carefully
control 1/0 to ensure that the data reach the appropriate processor. Also, since
the CPUs are separate, one may be sitting idle while another is overloaded,
resulting in inefficiencies. These inefficiencies can be avoided if the processors
share certain data structures. A multiprocessor system of this form will allow
processes and resources—such as memory—to be shared dynamically among
the various processors and can lower the variance among the processors. Such
a system must be written carefully, as we shall see in Chapter 6. Virtually all
modern operating systems—including Windows, Windows XP, Mac 05 X, and
Linux—now provide support for SMP.

The difference between symmetric and asymmetric multiprocessing may
result from either hardware or software. Special hardware can differentiate the
multiple processors, or the software can be written to allow only one master and
multiple slaves. For instance, Sun’s operating system SunOS Version 4 provided
asymmetric multiprocessing, whereas Version 5 (Solaris) is symmetric on the
same hardware.

A recent trend in CPU design is to include multiple compute cores on
a single chip. In essence, these are multiprocessor chips. Two-way chips are
becoming mainstream, while N-way chips are going to be common in high-end
systems. Aside from architectural considerations such as cache, memory, and
bus contention, these multi-core CPUs look to the operating system just as N
standard processors.

Lastly, blade servers are a recent development in which multiple processor
boards, I/0 boards, and networking boards are placed in the same chassis.
The difference between these and traditional multiprocessor systems is that
each blade-processor board boots independently and runs its own operating
system. Some blade-server boards are multiprocessor as well, which blurs the
lines between types of computers. In essence, those servers consist of multiple
independent multiprocessor systems.

1.3.3 Clustered Systems

Another type of multiple-CPU system is the clustered system. Like multipro-
cessor systems, clustered systems gather together multiple CPUs to accomplish
computational work. Clustered systems differ from multiprocessor systems,
however, in that they are composed of two or more individual systems
coupled together. The definition of the term clustered is not concrete; many
commercial packages wrestle with what a clustered system is and why one
form is better than another. The generally accepted definition is that clustered
computers share storage and are closely linked via a local-area network (LAN)
(as described in Section 1.10) or a taster interconnect such as InfiniBand.

Clustering is usually used to provide high-availability service; that is,
service will continue even if one or more systems in the cluster fail. High
availability is generally obtained by adding a level of redundancy in the
system. A layer of cluster software runs on the cluster nodes. Each node can
monitor one or more of the others (over the LAN). If the monitored machine
fails, the monitoring machine can take ownership of its storage and restart the
applications that were running on the failed machine. The users and clients of
the applications see only a brief interruption of service.
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Clustering can be structured asymmetrically or symmetrically. In asym-
metric clustering, one machine is in hot-standby mode while the other is
running the applications. The hot-standby host machine does nothing but
monitor the active server. If that server fails, the hot-standby host becomes the
active server. In symmetric mode, two or more hosts are running applications,
and are monitoring each other. This mode is obviously more efficient, as it uses
all of the available hardware. It does require that more than one application be
available to run.

Other forms of clusters include parallel clusters and clustering over a
wide-area network (WAN) (as described in Section 1.10). Parallel clusters allow
multiple hosts to access the same data on the shared storage. Because most
operating systems lack support for simultaneous data access by multiple hosts,
parallel clusters are usually accomplished by use of special versions of software
and special releases of applications. For example, Oracle Parallel Server is a
version of Oracle’s database that has been designed to run on a parallel cluster.
Each machine runs Oracle, and a layer of software tracks access to the shared
disk. Each machine has full access to all data in the database. To provide this
shared access to data, the system must also supply access control and locking
to ensure that no conflicting operations occur. This function, commonly known
as a distributed lock manager (DLM), is included in some cluster technology.

Cluster technology is changing rapidly. Some cluster products support
dozens of systems in a cluster, as well as clustered nodes that are separated
by miles. Many of these improvements are made possible by storage-area
networks (SANs), as described in Section 12.3.3, which allow many systems
to attach to a pool of storage. If the applications and their data are stored on
the SAN, then the cluster software can assign the application to run on any
host that is attached to the SAN. If the host fails, then any other host can take
over. In a database cluster, dozens of hosts can share the same database, greatly
increasing performance and reliability.

Operating-System Structure

Now that we have discussed basic information about computer-system orga-
nization and architecture, we are ready to talk about operating systems.
An operating system provides the environment within which programs are
executed. Internally, operating systems vary greatly in their makeup, since
they are organized along many different lines. There are, however, many
commonalities, which we consider in this section.

One of the most important aspects of operating systems is the ability to
multiprogram. A single user cannot, in general, keep either the CPU or the
[/0 devices busy at all times. Multiprogramming increases CPU utilization by
organizing jobs (code and data) so that the CPU always has one to execute.

The idea is as follows: The operating system keeps several jobs in memory
simultaneously (Figure 1.7). This set of jobs can be a subset of the jobs kept in
the job pool— which contains all jobs that enter the system—since the number
of jobs that can be kept simultaneously in memory is usually smaller than
the number of jobs that can be kept in the job pool. The operating system
picks and begins to execute one of the jobs in memory. Eventually, the job
may have to wait for some task, such as an I/0 operation, to complete. In a
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Figure 1.7 Memory layout for a muitiprogramming system.

non-multiprogrammed system, the CPU would sit idle. In a multiprogrammed
system, the operating system simply switches to, and executes, another job.
When that job needs to wait, the CPU is switched to another job, and so on.
Eventually, the first job finishes waiting and gets the CPU back. As long as at
least one job needs to execute, the CPU is never idle.

This idea is common in other life situations. A lawyer does not work for
only one client at a time, for example. While one case is waiting to go to trial
or have papers typed, the lawyer can work on another case. If he has enough
clients, the lawyer will never be idle for lack of work. (Idle lawyers tend to
become politicians, so there is a certain social value in keeping lawyers busy.)

Multiprogrammed systems provide an environment in which the various
system resources (for example, CPU, memory, and peripheral devices) are
utilized effectively, but they do not provide for user interaction with the
computer system. Time sharing (or multitasking) is a logical extension of
multiprogramming. In time-sharing systems, the CPU executes multiple jobs
by switching among them, but the switches occur so frequently that the users
can interact with each program while it is running.

Time sharing requires an interactive (or hands-on) computer system,
which provides direct communication between the user and the system. The
user gives instructions to the operating system or to a program directly, using a
input device such as a keyboard or a mouse, and waits for immediate results on
an output device. Accordingly, the response time should be short—typically
less than one second.

A time-shared operating system allows many users to share the computer
simultaneously. Since each action or command in a time-shared system tends
to be short, only a little CPU time is needed for each user. As the system switches -
rapidly from one user to the next, each user is given the impression that the
entire computer system is dedicated to his use, even though it is being shared
among many users.

A time-shared operating system uses CPU scheduling and multiprogram-
ming to provide each user with a small portion of a time-shared computer.
Each user has at least one separate program in memory. A program loaded into
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memory and executing is called a process. When a process executes, it typically
executes for only a short time before it either finishes or needs to perform 1/0.
I/0 may be interactive; that is, output goes to a display for the user, and input
comes from a user keyboard, mouse, or other device. Since interactive 1/0
typically runs at “people speeds,” it may take a long time to complete. Input,
for example, may be bounded by the user’s typing speed; seven characters per
second is fast for people but incredibly slow for computers. Rather than let
the CPU sit idle as this interactive input takes place, the operating system will
rapidly switch the CPU to the program of some other user.

Time-sharing and multiprogramming require several jobs to be kept
simultaneously in memory. Since in general main memory is too small to
accommodate all jobs, the jobs are kept initially on the disk in the job pool.
This pool consists of all processes residing on disk awaiting allocation of main
memory. If several jobs are ready to be brought into memory, and if there is
not enough room for all of them, then the system must choose among them.
Making this decision is job scheduling, which is discussed in Chapter 5. When
the operating system selects a job from the job pool, it loads that job into
memory for execution. Having several programs in memory at the same time
requires some form of memory management, which is covered in Chapters 8
and 9. In addition, if several jobs are ready to run at the same time, the system
must choose among them. Making this decision is CPU scheduling, which is
discussed in Chapter 5. Finally, running multiple jobs concurrently requires
that their ability to affect one another be limited in all phases of the operating
system, including process scheduling, disk storage, and memory management.
These considerations are discussed throughout the text.

In a time-sharing system, the operating system must ensure reasonable
response time, which is sometimes accomplished through swapping, where
processes are swapped in and out of main memory to the disk. A more common
method for achieving this goal is virtual memory, a technique that allows
the execution of a process that is not completely in memory (Chapter 9).
The main advantage of the virtual-memory scheme is that it enables users
to run programs that are larger than actual physical memory. Further, it
abstracts main memory into a large, uniform array of storage, separating logical
memory as viewed by the user from physical memory. This arrangement frees
programmers from concern over memory-storage limitations.

Time-sharing systems must also provide a file system (Chapters 10 and 11).
The file system resides on a collection of disks; hence, disk management must
be provided (Chapter 12). Also, time-sharing systems provide a mechanism for
protecting resources from inappropriate use (Chapter 14). To ensure orderly
execution, the system must provide mechanisms for job synchronization and
communication (Chapter 6), and it may ensure that jobs do not get stuck in a
deadlock, forever waiting for one another (Chapter 7).

Operating-System Operations

As mentioned earlier, modern operating systems are interrupt driven. If there
are no processes to execute, no 1/0 devices to service, and no users to whom
to respond, an operating system will sit quietly, waiting for something to
happen. Events are almost always signaled by the occurrence of an interrupt
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or a trap. A trap (or an exception) is a software-generated interrupt caused
either by an error (for example, division by zero or invalid memory access)
or by a specific request from a user program that an operating-system service
be performed. The interrupt-driven nature of an operating system defines
that system’s general structure. For each type of interrupt, separate segments
of code in the operating system determine what action should be taken. An
interrupt service routine is provided that is responsible for dealing with the
interrupt.

Since the operating system and the users share the hardware and software
resources of the computer system, we need to make sure that an error in a user
program could cause problems only for the one program that was running.
With sharing, many processes could be adversely affected by a bug in one
program. For example, if a process gets stuck in an infinite loop, this loop could
prevent the correct operation of many other processes. More subtle errors can
occur in a multiprogramming system, where one erroneous program might
modify another program, the data of another program, or even the operating
system itself.

Without protection against these sorts of errors, either the computer must
execute only one process at a time or all output must be suspect. A properly
designed operating system must ensure that an incorrect (or malicious)
program cannot cause other programs to execute incorrectly.

1.5.1 Dual-Mode Operation

In order to ensure the proper execution of the operating system, we must be
able to distinguish between the execution of operating-system code and user-
defined code. The approach taken by most computer systems is to provide
hardware support that allows us to differentiate among various modes of
execution.

At the very least, we need two separate modes of operation: user mode
and kernel mode (also called supervisor mode, system mode, or privileged
mode). A bit, called the mode bit, is added to the hardware of the computer to
indicate the current mode: kernel (0) or user (1). With the mode bit, we are able
to distinguish between a task that is executed on behalf of the operating system
and one that is executed on behalf of the user. When the computer system is
executing on behalf of a user application, the system is in user mode. However,
when a user application requests a service from the operating system (via a
system call), it must transition from user to kernel mode to fulfill the request.
This is shown in Figure 1.8. As we shall see, this architectural enhancement is
useful for many other aspects of system operation as well.

At system boot time, the hardware starts in kernel mode. The operating
system is then loaded and starts user applications in user mode. Whenever a
trap or interrupt occurs, the hardware switches from user mode to kernel mode
(that is, changes the state of the mode bit to 0). Thus, whenever the operating
system gains control of the computer, it is in kernel mode. The system always
switches to user mode (by setting the mode bit to 1) before passing control to
a user program.

The dual mode of operation provides us with the means for protecting the
operating system from errant users—and errant users from one another. We
accomplish this protection by designating some of the machine instructions that
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with possibly disastrous results. Recent versions of the Intel CPU, such as the
Pentium, do provide dual-mode operation. Accordingly, most contemporary
operating systems, such as Microsoft Windows 2000 and Windows XP, and
Linux and Solaris for x86 systems, take advantage of this feature and provide
greater protection for the operating system.

Once hardware protection is in place, errors violating modes are detected
by the hardware. These errors are normally handled by the operating system.
If a user program fails in some way—such as by making an attempt either
to execute an illegal instruction or to access memory that is not in the user’s
address space—then the hardware will trap to the operating system. The trap
transfers control through the interrupt vector to the operating system, just as
an interrupt does. When a program error occurs, the operating system must
terminate the program abnormally. This situation is handled by the same code
as is a user-requested abnormal termination. An appropriate error message is
given, and the memory of the program may be dumped. The memory dump
is usually written to a file so that the user or programmer can examine it and
perhaps correct it and restart the program.

1.5.2 Timer

We must ensure that the operating system maintains control over the CPU.
We must prevent a user program from getting stuck in an infinite loop or not
calling system services and never returning control to the operating system.
To accomplish this goal, we can use a timer. A timer can be set to interrupt
the computer after a specified period. The period may be fixed (for example,
1/60 second) or variable (for example, from 1 millisecond to 1 second). A
variable timer is generally implemented by a fixed-rate clock and a counter.
The operating system sets the counter. Every time the clock ticks, the counter
is decremented. When the counter reaches 0, an interrupt occurs. For instance,
a 10-bit counter with a 1-millisecond clock allows interrupts at intervals from
1 millisecond to 1,024 milliseconds, in steps of 1 millisecond.

Before turning over control to the user, the operating system ensures
that the timer is set to interrupt. If the timer interrupts, control transfers
automatically to the operating system, which may treat the interrupt as a fatal
error or may give the program more time. Clearly, instructions that modify the
content of the timer are privileged.

Thus, we can use the timer to prevent a user program from running too
long. A simple technique is to initialize a counter with the amount of time that a
program is allowed to run. A program with a 7-minute time limit, for example,
would have its counter initialized to 420. Every second, the timer interrupts
and the counter is decremented by 1. As long as the counter is positive, control
is returned to the user program. When the counter becomes negative, the
operating system terminates the program for exceeding the assigned time
limit.

Process Management
A program does nothing unless its instructions are executed by a CPU. A

program in execution, as mentioned, is a process. A time-shared user program
such as a compiler is a process. A word-processing program being run by an
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individual user on a PC is a process. A system task, such as sending eutput
to a printer, can also be a process (or at least part of one). For now, you can
consider a process to be a job or a time-shared program, but later you will learn
that the concept is more general. As we shall see in Chapter 3, it is possible
to provide system calls that allow processes to create subprocesses to execute
concurrently.

A process needs certain resources—including CPU time, memory, files,
and I/0 devices—to accomplish its task. These resources are either given to
the process when it is created or allocated to it while it is running. In addition
to the various physical and logical resources that a process obtains when it is
created, various initialization data (input) may be passed along. For example,
consider a process whose function is to display the status of a file on the screen
of a terminal. The process will be given as an input the name of the file and will
execute the appropriate instructions and system calls to obtain and display
on the terminal the desired information. When the process terminates, the
operating system will reclaim any reusable resources.

We emphasize that a program by itself is not a process; a program is a passive
entity, such as the contents of a file stored on disk, whereas a process is an active
entity. A single-threaded process has one program counter specifying the next
instruction to execute. (Threads will be covered in Chapter 4.) The execution
of such a process must be sequential. The CPU executes one instruction of the
process after another, until the process completes. Further, at any time, one
instruction at most is executed on behalf of the process. Thus, although two
processes may be associated with the same program, they are nevertheless
considered two separate execution sequences. A multithreaded process has
multiple program counters, each pointing to the next instruction to execute for
a given thread.

A process is the unit of work in a system. Such a system consists of a
collection of processes, some of which are operating-system processes (those
that execute system code) and the rest of which are user processes (those that
execute user code). All these processes can potentially execute concurrently —
by multiplexing the CPU among them on a single CPU, for example.

The operating system is responsible for the following activities in connec-
tion with process management:

® Creating and deleting both user and system processes
e Suspending and resuming processes

e Providing mechanisms for process synchronization

® Providing mechanisms for process communication

® Providing mechanisms for deadlock handling

We discuss process-management techniques in Chapters 3 through 6.

Memory Management

As we discussed in Section 1.2.2, the main memory is central to the operation
of a modern computer system. Main memory is a large array of words or bytes,
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ranging in size from hundreds of thousands to billions. Each word or byte has
its own address. Main memory is a repository of quickly accessible data shared
by the CPU and I/0 devices. The central processor reads instructions from main
memory during the instruction-fetch cycle and both reads and writes data from
main memory during the data-fetch cycle (on a Von Neumann architecture).
The main memory is generally the only large storage device that the CPU is able
to address and access directly. For example, for the CPU to process data from
disk, those data must first be transferred to main memory by CPU-generated
1/0 calls. In the same way, instructions must be in memory for the CPU to
execute them.

For a program to be executed, it must be mapped to absolute addresses and
loaded into memory. As the program executes, it accesses program instructions
and data from memory by generating these absolute addresses. Eventually,
the program terminates, its memory space is declared available, and the next
program can be loaded and executed.

To improve both the utilization of the CPU and the speed of the computer’s
response to its users, general-purpose computers must keep several programs
in memory, creating a need for memory management. Many different memory-
management schemes are used. These schemes reflect various approaches, and
the effectiveness of any given algorithm depends on the situation. In selecting a
memory-management scheme for a specific system, we must take into account
many factors—especially on the hardware design of the system. Each algorithm
requires its own hardware support.

The operating system is responsible for the following activities in connec-
tion with memory management:

e Keeping track of which parts of memory are currently being used and by
whom

e Deciding which processes (or parts thereof) and data to move into and out
of memory

e Allocating and deallocating memory space as needed

Memory-management techniques will be discussed in Chapters 8 and 9.

Storage Management

To make the computer system convenient for users, the operating system
provides a uniform, logical view of information storage. The operating system
abstracts from the physical properties of its storage devices to define a logical
storage unit, the file. The operating system maps files onto physical media and
accesses these files via the storage devices.

1.8.1 File-System Management

File management is one of the most visible components of an operating system.
Computers can store information on several different types of physical media.
Magnetic disk, optical disk, and magnetic tape are the most common. Each
of these media has its own characteristics and physical organization. Each
medium is controlled by a device, such as a disk drive or tape drive, that
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also has its own unique characteristics. These properties include accesssspeed,
capacity, data-transfer rate, and access method (sequential or random).

Afileisa collection of related information defined by its creator. Commonly,
files represent programs (both source and object forms) and data. Data files may
be numeric, alphabetic, alphanumeric, or binary. Files may be free-form (for
example, text files), or they may be formatted rigidly (for example, fixed fields).
Clearly, the concept of a file is an extremely general one.

The operating system implements the abstract concept of a file by managing
mass storage media, such as tapes and disks, and the devices that control them.
Also, files are normally organized into directories to make them easier to use.
Finally, when multiple users have access to files, it may be desirable to control
by whom and in what ways (for example, read, write, append) files may be
accessed.

The operating system is responsible for the following activities in connec-
tion with file management:

e (reating and deleting files

e (reating and deleting directories to organize files

e Supporting primitives for manipulating files and directories
e Mapping files onto secondary storage

¢ Backing up files on stable (nonvolatile) storage media

File-management techniques will be discussed in Chapters 10 and 11.

1.8.2 Mass-Storage Management

As we have already seen, because main memory is too small to accommodate
all data and programs, and because the data that it holds are lost when power
is lost, the computer system must provide secondary storage to back up main
memory. Most modern computer systems use disks as the principal on-line
storage medium for both programs and data. Most programs—including
compilers, assemblers, word processors, editors, and formatters—are stored
on a disk until loaded into memory and then use the disk as both the source
and destination of their processing. Hence, the proper management of disk
storage is of central importance to a computer system. The operating system is
responsible for the following activities in connection with disk management:

e Free-space management
e Storage allocation

e Disk scheduling

Because secondary storage is used frequently, it must be used efficiently. The
entire speed of operation of a computer may hinge on the speeds of the disk
subsystem and of the algorithms that manipulate that subsystem.

There are, however, many uses for storage that is slower and lower in cost
(and sometimes of higher capacity) than secondary storage. Backups of disk
data, seldom-used data, and long-term archival storage are some examples.
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Magnetic tape drives and their tapes and CD and DVD drives and plattets are
typical tertiary storage devices. The media (tapes and optical platters) vary
between WORM (write-once, read-many-times) and RW (read —write) formats.

Tertiary storage is not crucial to system performance, but it still must
be managed. Some operating systems take on this task, while others leave
tertiary-storage management to application programs. Some of the functions
that operating systems can provide include mounting and unmounting media
in devices, allocating and freeing the devices for exclusive use by processes,
and migrating data from secondary to tertiary storage.

Techniques for secondary and tertiary storage management will be dis-
cussed in Chapter 12.

1.8.3 Caching

Caching is an important principle of computer systems. Information is
normally kept in some storage system (such as main memory). As it is used,
it is copied into a faster storage system—the cache—on a temporary basis.
When we need a particular piece of information, we first check whether it is
in the cache. If it is, we use the information directly from the cache; if it is not,
we use the information from the source, putting a copy in the cache under the
assumption that we will need it again soon.

In addition, internal programmable registers, such as index registers,
provide a high-speed cache for main memory. The programmer (or compiler)
implements the register-allocation and register-replacement algorithms to
decide which information to keep in registers and which to keep in main
memory. There are also caches that are implemented totally in hardware. For
instance, most systems have an instruction cache to hold the next instructions
expected to be executed. Without this cache, the CPU would have to wait
several cycles while an instruction was fetched from main memory. For similar
reasons, most systems have one or more high-speed data caches in the memory
hierarchy. We are not concerned with these hardware-only caches in this text,
since they are outside the control of the operating system.

Because caches have limited size, cache management is an important
design problem. Careful selection of the cache size and of a replacement
policy can result in greatly increased performance. See Figure 1.9 for a storage
performance comparison in large workstations and small servers that shows
the need for caching. Various replacement algorithms for software-controlled
caches are discussed in Chapter 9.

Main memory can be viewed as a fast cache for secondary storage, since
data in secondary storage must be copied into main memory for use, and
data must be in main memory before being moved to secondary storage for
safekeeping. The file-system data, which resides permanently on secondary
storage, may appear on several levels in the storage hierarchy. At the highest .
level, the operating system may maintain a cache of file-system data in main
memory. Also, electronic RAM disks (also known as solid-state disks) may be
used for high-speed storage that is accessed through the file-system interface.
The bulk of secondary storage is on magnetic disks. The magnetic-disk storage,
in turn, is often backed up onto magnetic tapes or removable disks to protect
against data loss in case of a hard-disk failure. Some systems automatically
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Figure 1.9 Performance of various levels of storage.

archive old file data from secondary storage to tertiary storage, such as tape
jukeboxes, to lower the storage cost (see Chapter 12).

The movement of information between levels of a storage hierarchy may
be either explicit or implicit, depending on the hardware design and the
controlling operating-system software. For instance, data transfer from cache
to CPU and registers is usually a hardware function, with no operating-system
intervention. In contrast, transfer of data from disk to memory is usually
controlled by the operating system.

In a hierarchical storage structure, the same data may appear in different
levels of the storage system. For example, suppose that an integer A that is to
be incremented by 1 is located in file B, and file B resides on magnetic disk.
The increment operation proceeds by first issuing an I/0 operation to copy the
disk block on which A resides to main memory. This operation is followed by
copying A to the cache and to an internal register. Thus, the copy of A appears
in several places: on the magnetic disk, in main memory, in the cache, and in an
internal register (see Figure 1.10). Once the increment takes place in the internal
register, the value of A differs in the various storage systems. The value of A
becomes the same only after the new value of A is written from the internal
register back to the magnetic disk.

In a computing environment where only one process executes at a time,
this arrangement poses no difficulties, since an access to integer A will always
be to the copy at the highest level of the hierarchy. However, in a multitasking
environment, where the CPU is switched back and forth among various
processes, extreme care must be taken to ensure that, if several processes wish
to access A, then each of these processes will obtain the most recently updated
value of A.

Figure 1.10 Migration of integer A from disk to register.
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The situation becomes more complicated in a multiprocessor enviroriment
where, in addition to maintaining internal registers, each of the CPUs also
contains a local cache. In such an environment, a copy of A may exist
simultaneously in several caches. Since the various CPUs can all execute
concurrently, we must make sure that an update to the value of A in one cache
is immediately reflected in all other caches where A resides. This situation is
called cache coherency, and it is usually a hardware problem (handled below
the operating-system level).

In a distributed environment, the situation becomes even more complex.
In this environment, several copies (or replicas) of the same file can be kept
on different computers that are distributed in space. Since the various replicas
may be accessed and updated concurrently, some distributed systems ensure
that, when a replica is updated in one place, all other replicas are brought up
to date as soon as possible. There are various ways to achieve this guarantee,
as we discuss in Chapter 17.

1.8.4 1/0O Systems

One of the purposes of an operating system is to hide the peculiarities of specific
hardware devices from the user. For example, in UNIX, the peculiarities of 170
devices are hidden from the bulk of the operating system itself by the /O
subsystem. The I/0 subsystem consists of several components:

e A memory-management component that includes buffering, caching, and
spooling

® A general device-driver interface

¢ Drivers for specific hardware devices

Only the device driver knows the peculiarities of the specific device to which
it is assigned.

We discussed in Section 1.2.3 how interrupt handlers and device drivers are
used in the construction of efficient 1/0 subsystems. In Chapter 13, we discuss
how the I/0 subsystem interfaces to the other system components, manages
devices, transfers data, and detects I/O completion.

Protection and Security

If a computer system has multiple users and allows the concurrent execution
of multiple processes, then access to data must be regulated. For that purpose,
mechanisms ensure that files, memory segments, CPU, and other resources can
be operated on by only those processes that have gained proper authoriza-
tion from the operating system. For example, memory-addressing hardware . -
ensures that a process can execute only within its own address space. The
timer ensures that no process can gain control of the CPU without eventually
relinquishing control. Device-control registers are not accessible to users, so
the integrity of the various peripheral devices is protected.

Protection, then, is any mechanism for controlling the access of processes
or users to the resources defined by a computer system. This mechanism must
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provide means for specification of the controls to be imposed and means for
enforcement.

Protection can improve reliability by detecting latent errors at the interfaces
between component subsystems. Early detection of interface errors can often
prevent contamination of a healthy subsystem by another subsystem that
is malfunctioning. An unprotected resource cannot defend against use (or
misuse) by an unauthorized or incompetent user. A protection-oriented system
provides a means to distinguish between authorized and unauthorized usage,
as we discuss in Chapter 14.

A system can have adequate protection but still be prone to failure and
allow inappropriate access. Consider a user whose authentication information
(her means of identifying herself to the system) is stolen. Her data could be
copied or deleted, even though file and memory protection are working. It is
the job of security to defend a system from external and internal attacks. Such
attacks spread across a huge range and include viruses and worms, denial-of-
service attacks (which use all of a system’s resources and so keep legitimate
users out of the system), identity theft, and theft of service (unauthorized use
of a system). Prevention of some of these attacks is consider an operating-
system function on some systems, while others leave the prevention to policy
or additional software. Due to the alarming rise in security incidents, operating-
system security features represent a fast-growing area of research and of
implementation. Security is discussed in Chapter 15.

Protection and security require the system to be able to distinguish among
all its users. Most operating systems maintain a list of user names and
associated user identifiers (user IDs). In Windows NT parlance, thisis a security
ID (SID). These numerical IDs are unique, one per user. When a user logs in
to the system, the authentication stage determines the appropriate user ID for
the user. That user ID is associated with all of the user’s processes and threads.
When an 1D needs to be user readable, it is translated back to the user name
via the user name list.

In some circumstances, we wish to distinguish among sets of users rather
than individual users. For example, the owner of a file on a UNIX system may be
allowed to issue all operations on that file, whereas a selected set of users may
only be allowed to read the file. To accomplish this, we need to define a group
name and the set of users belonging to that group. Group functionality can
be implemented as a system-wide list of group names and group identifiers.
A user can be in one or more groups, depending on operating-system design
decisions. The user’s group IDs are also included in every associated process
and thread.

In the course of normal use of a system, the user ID and group 1D
for a user are sufficient. However, a user sometimes needs to escalate
privileges to gain extra permissions for an activity. The user may need
access to a device that is restricted, for example. Operating systems pro-
vide various methods to allow privilege escalation. On UNIX, for example,
the setuid attribute on a program causes that program to run with the
user ID of the owner of the file, rather than the current user’s ID. The pro-
cess runs with this effective UID until it turns off the extra privileges or
terminates. Consider an example of how this is done in Solaris 10. User
pbg has user ID 101 and group 1D 14, which are assigned via /etc/passwd:
pbg:x:101:14::/export/home/pbg: /usr/bin/bash
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A distributed system is a collection of physically separate, possibly heteroge-
neous computer systems that are networked to provide the users with access
to the various resources that the system maintains. Access to a shared resource
increases computation speed, functionality, data availability, and reliability.
Some operating systems generalize network access as a form of file access, with
the details of networking contained in the network interface’s device driver.
Others make users specifically invoke network functions. Generally, systems
contain a mix of the two modes—for example FTP and NFS. The protocols
that create a distributed system can greatly affect that system’s utility and
popularity.

A network, in the simplest terms, is a communication path between
two or more systems. Distributed systems depend on networking for their
functionality. Networks vary by the protocols used, the distances between
nodes, and the transport media. TCP/IP is the most common network protocol,
although ATM and other protocols are in widespread use. Likewise, operating-
system support of protocols varies. Most operating systems support TCP/IP,
including the Windows and UNIX operating systems. Some systems support
proprietary protocols to suit their needs. To an operating system, a network
protocol simply needs an interface device—a network adapter, for example—
with a device driver to manage it, as well as software to handle data. These
concepts are discussed throughout this book.

Networks are characterized based on the distances between their nodes.
A local-area network (LAN) connects computers within a room, a floor,
or a building. A wide-area network (WAN) usually links buildings, cities,
or countries. A global company may have a WAN to connect its offices
worldwide. These networks may run one protocol or several protocols. The
continuing advent of new technologies brings about new forms of networks.
For example, a metropolitan-area network (MAN) could link buildings within
a city. BlueTooth and 802.11 devices use wireless technology to communicate
over a distance of several feet, in essence creating a small-area network such
as might be found in a home.

The media to carry networks are equally varied. They include copper wires,
fiber strands, and wireless transmissions between satellites, microwave dishes,
and radios. When computing devices are connected to cellular phones, they
create a network. Even very short-range infrared communication can be used
for networking. At a rudimentary level, whenever computers communicate,
they use or create a network. These networks also vary in their performance
and reliability.

Some operating systems have taken the concept of networks and dis-
tributed systems further than the notion of providing network connectivity. A
network operating system is an operating system that provides features such

as file sharing across the network and that includes a communication scheme . -

that allows different processes on different computers to exchange messages.
A computer running a network operating system acts autonomously from all
other computers on the network, although it is aware of the network and is
able to communicate with other networked computers. A distributed operat-
ing system provides a less autonomous environment: The different operating
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systems communicate closely enough to provide the illusion that only a single
operating system controls the network.

We cover computer networks and distributed systems in Chapters 16
through 18.

Special-Purpose Systems

The discussion thus far has focused on general-purpose computer systems
that we are all familiar with. There are, however, different classes of computer
systems whose functions are more limited and whose objective is to deal with
limited computation domains.

1.11.1 Real-Time Embedded Systems

Embedded computers are the most prevalent form of computers in existence.
These devices are found everywhere, from car engines and manufacturing
robots to VCRs and microwave ovens. They tend to have very specific tasks.
The systems they run on are usually primitive, and so the operating systems
provide limited features. Usually, they have little or no user interface, preferring
to spend their time monitoring and managing hardware devices, such as
automobile engines and robotic arms.

These embedded systems vary considerably. Some are general-purpose
computers, running standard operating systems-—such as UNIX—with
special-purpose applications to implement the functionality. Others are
hardware devices with a special-purpose embedded operating system
providing just the functionality desired. Yet others are hardware devices
with application-specific integrated circuits (ASICs) that perform their tasks
without an operating system.

The use of embedded systems continues to expand. The power of these
devices, both as standalone units and as members of networks and the Web,
is sure to increase as well. Even now, entire houses can be computerized, so
that a central computer—either a general-purpose computer or an embedded
system—can control heating and lighting, alarm systems, and even coffee
makers. Web access can enable a home owner to tell the house to heat up
before she arrives home. Someday, the refrigerator may call the grocery store
when it notices the milk is gone.

Embedded systems almost always run real-time operating systems. A
real-time system is used when rigid time requirements have been placed on
the operation of a processor or the flow of data; thus, it is often used as a
control device in a dedicated application. Sensors bring data to the computer.
The computer must analyze the data and possibly adjust controls to modify
the sensor inputs. Systems that control scientific experiments, medical imaging
systems, industrial control systems, and certain display systems are real-
time systems. Some automobile-engine fuel-injection systems, home-appliance
controllers, and weapon systems are also real-time systems.

A real-time system has well-defined, fixed time constraints. Processing
must be done within the defined constraints, or the system will fail. For instance,
it would not do for a robot arm to be instructed to halt after it had smashed
into the car it was building. A real-time system functions correctly only if it
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returns the correct result within its time constraints. Contrast this system with
a time-sharing system, where it is desirable (but not mandatory) to respond
quickly, or a batch system, which may have no time constraints at all.

In Chapter 19, we cover real-time embedded systems in great detail. In
Chapter 5, we consider the scheduling facility needed to implement real-time
functionality in an operating system. In Chapter 9, we describe the design
of memory management for real-time computing. Finally, in Chapter 22, we
describe the real-time components of the Windows XP operating system.

1.11.2 Multimedia Systems

Most operating systems are designed to handle conventional data such as
text files, programs, word-processing documents, and spreadsheets. However,
a recent trend in technology is the incorporation of multimedia data into
computer systems. Multimedia data consist of audio and video files as well as
conventional files. These data differ from conventional data in that multimedia
data—such as frames of video—must be delivered (streamed) according to
certain time restrictions (for example, 30 frames per second).

Multimedia describes a wide range of applications that are in popular use
today. These include audio files such as MP3 DVD movies, video conferencing,
and short video clips of movie previews or news stories downloaded over the
Internet. Multimedia applications may also include live webcasts (broadcasting
over the World Wide Web) of speeches or sporting events and even live
webcams that allow a viewer in Manhattan to observe customers at a cafe
in Paris. Multimedia applications need not be either audio or video; rather, a
multimedia application often includes a combination of both. For example, a
movie may consist of separate audio and video tracks. Nor must multimedia
applications be delivered only to desktop personal computers. Increasingly,
they are being directed toward smaller devices, including PDAs and cellular
telephones. For example, a stock trader may have stock quotes delivered
wirelessly and in real time to his PDA.

In Chapter 20, we explore the demands of multimedia applications, how
multimedia data differ from conventional data, and how the nature of these
data affects the design of operating systems that support the requirements of
multimedia systems.

1.11.3 Handheld Systems

Handheld systems include personal digital assistants (PDAs), such as Palm
and Pocket-PCs, and cellular telephones, many of which use special-purpose
embedded operating systems. Developers of handheld systems and applica-
tions face many challenges, most of which are due to the limited size of such
devices. For example, a PDA is typically about 5 inches in height and 3 inches
in width, and it weighs less than one-half pound. Because of their size, most
handheld devices have a small amount of memory, slow processors, and small
display screens. We will take a look now at each of these limitations.

The amount of physical memory in a handheld depends upon the device,
but typically is is somewhere between 512 KB and 128 MB. (Contrast this with a
typical PC or workstation, which may have several gigabytes of memory!)
As a result, the operating system and applications must manage memory
efficiently. This includes returning all allocated memory back to the memory
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manager when the memory is not being used. In Chapter 9, we will explore
virtual memory, which allows developers to write programs that behave as if
the system has more memory than is physically available. Currently, not many
handheld devices use virtual memory techniques, so program developers must
work within the confines of limited physical memory.

A second issue of concern to developers of handheld devices is the speed
of the processor used in the devices. Processors for most handheld devices
run at a fraction of the speed of a processor in a PC. Faster processors require
more power. To include a faster processor in a handheld device would require
a larger battery, which would take up more space and would have to be
replaced (or recharged) more frequently. Most handheld devices use smaller,
slower processors that consume less power. Therefore, the operating system
and applications must be designed not to tax the processor.

The last issue confronting program designers for handheld devices is 1/0.
A lack of physical space limits input methods to small keyboards, handwriting
recognition, or small screen-based keyboards. The small display screens limit
output options. Whereas a monitor for a home computer may measure up to
30 inches, the display for a handheld device is often no more than 3 inches
square. Familiar tasks, such as reading e-mail and browsing web pages, must
be condensed into smaller displays. One approach for displaying the content
in web pages is web clipping, where only a small subset of a web page is
delivered and displayed on the handheld device.

Some handheld devices use wireless technology, such as BlueTooth or
802.11, allowing remote access to e-mail and web browsing. Cellular telephones
with connectivity to the Internet fall into this category. However, for PDAs that
do not provide wireless access, downloading data typically requires the user
to first download the data to a PC or workstation and then download the data
to the PDA. Some PDAs allow data to be directly copied from one device to
another using an infrared link.

Generally, the limitations in the functionality of PDAs are balanced by
their convenience and portability. Their use continues to expand as network
connections become more available and other options, such as digital cameras
and MP3 players, expand their utility.

Computing Environments

So far, we have provided an overview of computer-system organization and
major operating-system components. We conclude with a brief overview of
how these are used in a variety of computing environments.

1.12.1 Traditional Computing

As computing matures, the lines separating many of the traditional computing
environments are blurring. Consider the “typical office environment.” Just a
few years ago, this environment consisted of PCs connected to a network,
with servers providing file and print services. Remote access was awkward,
and portability was achieved by use of laptop computers. Terminals attached
to mainframes were prevalent at many companies as well, with even fewer
remote access and portability options.
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The current trend is toward providing more ways to access these computing
environments. Web technologies are stretching the boundaries of traditional
computing. Companies establish portals, which provide web accessibility
to their internal servers. Network computers are essentially terminals that
understand web-based computing. Handheld computers can synchronize with
PCs to allow very portable use of company information. Handheld PDAs can
also connect to wireless networks to use the company’s web portal (as well as
the myriad other web resources).

Athome, most users had a single computer with a slow modem connection
to the office, the Internet, or both. Today, network-connection speeds once
available only at great cost are relatively inexpensive, giving home users more
access to more data. These fast data connections are allowing home computers
to serve up web pages and to run networks that include printers, client PCs,
and servers. Some homes even have firewalls to protect their networks from
security breaches. Those firewalls cost thousands of dollars a few years ago
and did not even exist a decade ago.

In the latter half of the previous century, computing resources were scarce.
(Before that, they were nonexistent!) For a period of time, systems were either
batch or interactive. Batch system processed jobs in bulk, with predetermined
input (from files or other sources of data). Interactive systems waited for
input from users. To optimize the use of the computing resources, multiple
users shared time on these systems. Time-sharing systems used a timer and
scheduling algorithms to rapidly cycle processes through the CPU, giving each
user a share of the resources.

Today, traditional time-sharing systems are uncommon. The same schedul-
ing technique is still in use on workstations and servers, but frequently the
processes are all owned by the same user (or a single user and the operating
system). User processes, and system processes that provide services to the user,
are managed so that each frequently gets a slice of computer time. Consider
the windows created while a user is working on a PC, for example, and the fact
that they may be performing different tasks at the same time.

1.12.2 Client-Server Computing

As PCs have become faster, more powerful, and cheaper, designers have
shifted away from centralized system architecture. Terminals connected to
centralized systems are now being supplanted by PCs. Correspondingly, user-
interface functionality once handled directly by the centralized systems is
increasingly being handled by the PCs. As a result, many of todays systems act
as server systems to satisfy requests generated by client systems. This form
of specialized distributed system, called client—server system, has the general
structure depicted in Figure 1.11.

Server systems can be broadly categorized as compute servers and file
servers:

® The compute-server system provides an interface to which a client can
send a request to perform an action (for example, read data); in response,
the server executes the action and sends back results to the client. A server
running a database that responds to client requests for data is an example
of such a system.
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Figure 1.11 General structure of a client—server system.

® The file-server system provides a file-system interface where clients can
create, update, read, and delete files. An example of such a system is a web
server that delivers files to clients running web browsers.:

1.12.3 Peer-to-Peer Computing

Another structure for a distributed system is the peer-to-peer (P2P) system
model. In this model, clients and servers are not distinguished from one
another; instead, all nodes within the system are considered peers, and each
may act as either a client or a server, depending on whether it is requesting or
providing a service. Peer-to-peer systems offer an advantage over traditional
client-server systems. In a client-server system, the server is a bottleneck; but
in a peer-to-peer system, services can be provided by several nodes distributed
throughout the network.

To participate in a peer-to-peer system, a node must first join the network
of peers. Once a node has joined the network, it can begin providing services
to—and requesting services from-—other nodes in the network. Determining
what services are available is accomplished in one of two general ways:

® When a node joins a network, it registers its service with a centralized
lookup service on the network. Any node desiring a specific service first
contacts this centralized lookup service to determine which node provides
the service. The remainder of the communication takes place between the
client and the service provider.

¢ A peer acting as a client must first discover what node provides a desired
service by broadcasting a request for the service to all other nodes in the
network. The node (or nodes) providing that service responds to the peer
making the request. To support this approach, a discovery protocol must be
provided that allows peers to discover services provided by other peers in
the network.

Peer-to-peer networks gained widespread popularity in the late 1990s with
several file-sharing services, such as Napster and Gnutella, that enable peers
to exchange files with one another. The Napster system uses an approach
similar to the first type described above: a centralized server maintains an
index of all files stored on peer nodes in the Napster network, and the actual
exchanging of files takes place between the peer nodes. The Gnutella system
uses a technique similar to the second type: a client broadcasts file requests
to other nodes in the system, and nodes that can service the request respond
directly to the client. The future of exchanging files remains uncertain because
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~many of the files are copyrighted (music, for example), and there are’ laws

governing the distribution of copyrighted material. In any case, though, peer-
to-peer technology undoubtedly will play a role in the future of many services,
such as searching, file exchange, and e-mail.

1.12.4 Web-Based Computing

The Web has become ubiquitous, leading to more access by a wider variety of
devices than was dreamt of a few years ago. PCs are still the most prevalent
access devices, with workstations, handheld PDAs, and even cell phones also
providing access.

Web computing has increased the emphasis on networking. Devices that
were not previously networked now include wired or wireless access. Devices
that were networked now have faster network connectivity, provided by either
improved networking technology, optimized network implementation code,
or both.

The implementation of web-based computing has given rise to new
categories of devices, such as load balancers, which distribute network
connections among a pool of similar servers. Operating systems like Windows
95, which acted as web clients, have evolved into Linux and Windows XP, which
can act as web servers as well as clients. Generally, the Web has increased the
complexity of devices, because their users require them to be web-enabled.

Summary

An operating system is software that manages the computer hardware as well
as providing an environment for application programs to run. Perhaps the
most visible aspect of an operating system is the interface to the computer
system it provides to the human user.

For a computer to do its job of executing programs, the programs must be
in main memory. Main memory is the only large storage area that the processor
can access directly. Itis an array of words or bytes, ranging in size from millions
to billions. Each word in memory has its own address. The main memory is
usually a volatile storage device that loses its contents when power is turned off
or lost. Most computer systems provide secondary storage as an extension of
main memory. Secondary storage provides a form of non-volatile storage that
is capable of holding large quantities of data permanently. The most common
secondary-storage device is a magnetic disk, which provides storage of both
programs and data.

The wide variety of storage systems in a computer system can be organized
in a hierarchy according to speed and cost. The higher levels are expensive,

but they are fast. As we move down the hierarchy, the cost per bit generally-- -

decreases, whereas the access time generally increases.

There are several different strategies for designing a computer system.
Uniprocessor systems have only a single processor while multiprocessor
systems contain two or more processors that share physical memory and
peripheral devices. The most common multiprocessor design is symmetric
multiprocessing (or SMP), where all processors are considered peers and run
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independently of one another. Clustered systems are a specialized form of
multiprocessor systems and consist of multiple computer systems connected
by a local area network.

To best utilize the CPU, modern operating systems employ multiprogram-
ming, which allows several jobs to be in memory at the same time, thus ensuring
the CPU always has a job to execute. Timesharing systems are an extension
of multiprogramming whereby CPU scheduling algorithms rapidly switch
between jobs, thus providing the illusion each job is running concurrently.

The operating system must ensure correct operation of the computer
system. To prevent user programs from interfering with the proper operation of
the system, the hardware has two modes: user mode and kernel mode. Various
instructions (such as I/0 instructions and halt instructions) are privileged and
can be executed only in kernel mode. The memory in which the operating
system resides must also be protected from modification by the user. A timer
prevents infinite loops. These facilities (dual mode, privileged instructions,
memory protection, and timer interrupt) are basic building blocks used by
operating systems to achieve correct operation.

A process (or job) is the fundamental unit of work in an operating system.
Process management includes creating and deleting processes and providing
mechanisms for processes to communicate and synchronize with another.
An operating system manages memory by keeping track of what parts of
memory are being used and by whom. The operating system is also responsible
for dynamically allocating and freeing memory space. Storage space is also
managed by the operating system and this includes providing file systems for
representing files and directories and managing space on mass storage devices.

Operating systems must also be concerned with protecting and securing
the operating system and users. Protection are mechanisms that control the
access of processes or users to the resources made available by the computer
system. Security measures are responsible for defending a computer system
from external or internal attacks.

Distributed systems allow users to share resources on geographically
dispersed hosts connected via a computer network. Services may be provided
through either the client—server model or the peer-to-peer model. In a clustered
system, multiple machines can perform computations on data residing on
shared storage, and computing can continue even when some subset of cluster
members fails.

LANs and WANs are the two basic types of networks. LANs enable
processors distributed over a small geographical area to communicate, whereas
WANSs allow processors distributed over a larger area to communicate. LANs
typically are faster than WANs.

There are several computer systems that serve specific purposes. These
include real-time operating systems designed for embedded environments
such as consumer devices, automobiles, and robotics. Real-time operating
systems have well defined, fixed time constraints. Processing must be done
within the defined constraints, or the system will fail. Multimedia systems
involve the delivery of multimedia data and often have special requirements of
displaying or playing audio, video, or synchronized audio and video streams.

Recently, the influence of the Internet and the World Wide Web has
encouraged the development of modern operating systems that include web
browsers and networking and communication software as integral features.
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1.1

1.2

1.3

14

1.5

1.6

1.7

1.8

1.9

1.10

In a multiprogramming and time-sharing environment, several users
share the system simultaneously. This situation can result in various
security problems.

a. What are two such problems?

b. Can we ensure the same degree of security in a time-shared
machine as in a dedicated machine? Explain your answer.

The issue of resource utilization shows up in different forms in different
types of operating systems. List what resources must be managed
carefully in the following settings:

a. Mainframe or minicomputer systems
b. Workstations connected to servers

c. Handheld computers

Under what circumstances would a user be better off using a time-
sharing system rather than a PC or single-user workstation?

Which of the functionalities listed below need to be supported by the
operating system for the following two settings: (a) handheld devices
and (b) real-time systems.

a. Batch programming
b. Virtual memory

c. Time sharing

Describe the differences between symmetric and asymmetric multipro-
cessing. What are three advantages and one disadvantage of multipro-
cessor systems?

How do clustered systems differ from multiprocessor systems? What is
required for two machines belonging to a cluster to cooperate to provide
a highly available service?

Distinguish between the client—server and peer-to-peer models of
distributed systems.

Consider a computing cluster consisting of two nodes running a
database. Describe two ways in which the cluster software can manage
access to the data on the disk. Discuss the benefits and disadvantages of
each.

How are network computers different from traditional personal com-""
puters? Describe some usage scenarios in which it is advantageous to
use network computers.

What is the purpose of interrupts? What are the differences between a
trap and an interrupt? Can traps be generated intentionally by a user
program? If so, for what purpose?
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Direct memory access is used for high-speed 1/0 devices in order to
avoid increasing the CPU’s execution load.

a. How does the CPU interface with the device to coordinate the
transfer?

b. How does the CPU know when the memory operations are
complete?

c. The CPU is allowed to execute other programs while the DMA
controller is transferring data. Does this process interfere with
the execution of the user programs? If so, describe what forms of
interference are caused.

Some computer systems do not provide a privileged mode of operation
in hardware. Is it possible to construct a secure operating system for
these computer systems? Give arguments both that it is and that it is not
possible,

Give two reasons why caches are useful. What problems do they solve?
What problems do they cause? If a cache can be made as large as the
device for which it is caching (for instance, a cache as large as a disk),
why not make it that large and eliminate the device?

Discuss, with examples, how the problem of maintaining coherence of
cached data manifests itself in the following processing environments:

a. Single-processor systems
b. Multiprocessor systems
c. Distributed systems

Describe a mechanism for enforcing memory protection in order to
prevent a program from modifying the memory associated with other
programs.

What network configuration would best suit the following environ-
ments?

a. A dormitory floor
b. A university campus
c. A state

d. A nation

Define the essential properties of the following types of operating
systems:

Batch

a.
b. Interactive

n

Time sharing

a

Real time

e. Network
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f. Parallel ’
g. Distributed
h. Clustered
i. Handheld
1.18 What are the tradeoffs inherent in handheld computers?
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2.1

An operating system provides the environment within which programs are
executed. Internally, operating systems vary greatly in their makeup, since
they are organized along many different lines. The design of a new operating
system is a major task. It is important that the goals of the system be well
defined before the design begins. These goals form the basis for choices among
various algorithms and strategies.

We can view an operating system from several vantage points. One view
focuses on the services that the system provides; another, on the interface that
it makes available to users and programmers; a third, on its components and
their interconnections. In this chapter, we explore all three aspects of operating
systems, showing the viewpoints of users, programmers, and operating-system
designers. We consider what services an operating system provides, how they
are provided, and what the various methodologies are for designing such
systems. Finally, we describe how operating systems are created and how a
computer starts its operating system.

CHAPTER OBJECTIVES

» To describe the services an operating system provides to users, processes,
and other systems.

* To discuss the various ways of structuring an operating system.

* To explain how operating systems are installed and customized and how
they boot.

Operating-System Services

An operating system provides an environment for the execution of programs.
It provides certain services to programs and to the users of those programs.
The specific services provided, of course, differ from one operating system to
another, but we can identify common classes. These operating-system services
are provided for the convenience of the programmer, to make the programming
task easier.

39
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One set of operating-system services provides functions that are helpful to
the user.

e User interface. Almost all operating systems have a user interface (UI).
This interface can take several forms. One is a command-line interface
(CLD, which uses text commands and a method for entering them (say, a
program to allow entering and editing of commands). Another is a batch
interface, in which commands and directives to control those commands
are entered into files, and those files are executed. Most commonly, a
graphical user interface (GUI) is used. Here, the interface is a window
system with a pointing device to direct 1/0, choose from menus, and make
selections and a keyboard to enter text. Some systems provide two or all
three of these variations.

e Program execution. The system must be able to load a program into
memory and to run that program. The program must be able to end its
execution, either normally or abnormally (indicating error).

® 1/O operations. A running program may require [/O, which may involve a
file or an 1/0 device. For specific devices, special functions may be desired
(such as recording to a CD or DVD drive or blanking a CRT screen). For
efficiency and protection, users usually cannot control I/O devices directly.
Therefore, the operating system must provide a means to do I/0.

e File-system manipulation. The file system is of particular interest. Obvi-
ously, programs need to read and write files and directories. They also
need to create and delete them by name, search for a given file, and list file
information. Finally, some programs include permissions management to
allow or deny access to files or directories based on file ownership.

e Communications. There are many circumstances in which one process
needs to exchange information with another process. Such communication
may occur between processes that are executing on the same computer
or between processes that are executing on different computer systems
tied together by a computer network. Communications may be imple-
mented via shared memory or through message passing, in which packets of
information are moved between processes by the operating system.

e Error detection. The operating system needs to be constantly aware of
possible errors. Errors may occur in the CPU and memory hardware (such
as a memory error or a power failure), in1/0 devices (such as a parity error
on tape, a connection failure on a network, or lack of paper in the printer),
and in the user program (such as an arithmetic overflow, an attempt to
access an illegal memory location, or a too-great use of CPU time). For each
type of error, the operating system should take the appropriate action to
ensure correct and consistent computing. Debugging facilities can greatly
enhance the user’s and programmer’s abilities to use the system efficiently.

Another set of operating-system functions exists not for helping the user
but rather for ensuring the efficient operation of the system itself. Systems with
multiple users can gain efficiency by sharing the computer resources among
the users.
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¢ Resource allocation. When there are multiple users or multiple jobs
running at the same time, resources must be allocated to each of them.
Many different types of resources are managed by the operating system.
Some (such as CPU cycles, main memory, and file storage) may have special
allocation code, whereas others (such as I/0 devices) may have much more
general request and release code. For instance, in determining how best to
use the CPU, operating systems have CPU-scheduling routines that take into
account the speed of the CPU, the jobs that must be executed, the number of
registers available, and other factors. There may also be routines to allocate
printers, modems, USB storage drives, and other peripheral devices.

e Accounting. We want to keep track of which users use how much and
what kinds of computer resources. This record keeping may be used for
accounting (so that users can be billed) or simply for accumulating usage
statistics. Usage statistics may be a valuable tool for researchers who wish
to reconfigure the system to improve computing services.

e Protection and security. The owners of information stored in a multiuser or
networked computer system may want to control use of that information.
When several separate processes execute concurrently, it should not be
possible for one process to interfere with the others or with the operating
system itself. Protection involves ensuring that all access to system
resources is controlled. Security of the system from outsiders is also
important. Such security starts with requiring each user to authenticate
himself or herself to the system, usually by means of a password, to gain
access to system resources. It extends to defending external 1/0 devices,
including modems and network adapters, from invalid access attempts
and to recording all such connections for detection of break-ins. If a system
is to be protected and secure, precautions must be instituted throughout
it. A chain is only as strong as its weakest link.

User Operating-System Interface

There are two fundamental approaches for users to interface with the operating
system. One technique is to provide a command-line interface or command
interpreter that allows users to directly enter commands that are to be
performed by the operating system. The second approach allows the user
to interface with the operating system via a graphical user interface or GUL

2.21 Command Interpreter

Some operating systems include the command interpreter in the kernel. Others,
such as Windows XP and UNIX, treat the command interpreter as a special
program that is running when a job is initiated or when a user first logs
on (on interactive systems). On systems with multiple command interpreters -
to choose from, the interpreters are known as shells. For example, on UNIX
and Linux systems, there are several different shells a user may choose from
including the Bourne shell, C shell, Bourne-Again shell, the Korn shell, etc. Most
shells provide similar functionality with only minor differences; most users
choose a shell based upon personal preference.
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The main function of the command interpreter is to get and execute the next
user-specified command. Many of the commands given at this level manipulate
files: create, delete, list, print, copy, execute, and so on. The MS-DOS and UNIX
shells operate in this way. There are two general ways in which these commands
can be implemented.

In one approach, the command interpreter itself contains the code to
execute the command. For example, a command to delete a file may cause
the command interpreter to jump to a section of its code that sets up the
parameters and makes the appropriate system call. In this case, the number of
commands that can be given determines the size of the command interpreter,
since each command requires its own implementing code.

An alternative approach—used by UNIX, among other operating systems
—implements most commands through system programs. In this case, the
command interpreter does not understand the command in any way; it merely
uses the command to identify a file to be loaded into memory and executed.
Thus, the UNIX command to delete a file

rm file.txt

would search for a file called rm, load the file into memory, and execute it with
the parameter file.txt. The function associated with the rm command would
be defined completely by the code in the file rm. In this way, programmers can
add new commands to the system easily by creating new files with the proper
names. The command-interpreter program, which can be small, does not have
to be changed for new commands to be added.

2.2.2 Graphical User Interfaces

A second strategy for interfacing with the operating system is through a user-
friendly graphical user interface or GUIL Rather than having users directly enter
commands via a command-line interface, a GUI allows provides a mouse-based
window-and-menu system as an interface. A GUI provides a desktop metaphor
where the mouse is moved to position its pointer on images, or icons, on the
screen (the desktop) that represent programs, files, directories, and system
functions. Depending on the mouse pointer’s location, clicking a button on the
mouse can invoke a program, select a file or directory—known as a folder—
or pull down a menu that contains commands.

Graphical user interfaces first appeared due in part to research taking place
in the early 1970s at Xerox PARC research facility. The first GUI appeared on
the Xerox Alto computer in 1973. However, graphical interfaces became more
widespread with the advent of Apple Macintosh computers in the 1980s. The
user interface to the Macintosh operating system (Mac OS) has undergone
various changes over the years, the most significant being the adoption of
the Aqua interface that appeared with Mac OS X. Microsoft’s first version
of Windows—version 1.0—was based upon a GUI interface to the MS-DOS
operating system. The various versions of Windows systems proceeding this
initial version have made cosmetic changes to the appearance of the GUI and
several enhancements to its functionality, including the Windows Explorer.

Traditionally, UNIX systems have been dominated by command-line inter-
faces, although there are various GUI interfaces available, including the Com-
mon Desktop Environment (CDE) and X-Windows systems that are common on
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commercial versions of UNIX such as Solaris and IBM’s AIX system. However,
there has been significant development in GUI designs from various open-
source projects such as K Desktop Environment (or KDE) and the GNOME desktop
by the GNU project. Both the KDE and GNOME desktops run on Linux and
various UNIX systems and are available under open-source licenses, which
means their source code is in the public domain.

The choice of whether to use a command-line or GUI interface is mostly
one of personal preference. As a very general rule, many UNIX users prefer
a command-line interface as they often provide powerful shell interfaces.
Alternatively, most Windows users are pleased to use the Windows GUI
environment and almost never use the MS-DOS shell interface. The various
changes undergone by the Macintosh operating systems provides a nice study
in contrast. Historically, Mac OS has not provided a command line interface,
always requiring its users to interface with the operating system using its GUL
However, with the release of Mac OS X (which is in part implemented using a
UNIX kernel), the operating system now provides both a new Aqua interface
and command-line interface as well.

The user interface can vary from system to system and even from user
to user within a system. It typically is substantially removed from the actual
system structure. The design of a useful and friendly user interface is therefore
not a direct function of the operating system. In this book, we concentrate on
the fundamental problems of providing adequate service to user programs.
From the point of view of the operating system, we do not distinguish between
user programs and system programs.

System Calls

System calls provide aninterface to the services made available by an operating
system. These calls are generally available as routines written in C and
C++, although certain low-level tasks (for example, tasks where hardware
must be accessed directly), may need to be written using assembly-language
instructions.

Before we discuss how an operating system makes system calls available,
let’s first use an example to illustrate how system calls are used: writing a
simple program to read data from one file and copy them to another file. The
first input that the program will need is the names of the two files: the input file
and the output file. These names can be specified in many ways, depending
on the operating-system design. One approach is for the program to ask the
user for the names of the two files. In an interactive system, this approach will
require a sequence of system calls, first to write a prompting message on the
screen and then to read from the keyboard the characters that define the two
files. On mouse-based and icon-based systems, a menu of file names is usually
displayed in a window. The user can then use the mouse to select the source
name, and a window can be opened for the destination name to be specified.
This sequence requires many 1/0 system calls.

Once the two file names are obtained, the program must open the input file
and create the output file. Each of these operations requires another system call.
There are also possible error conditions for each operation. When the program
tries to open the input file, it may find that there is no file of that name or that
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EXAMPLE OF STANDARD APL

: ;As an example of a standard API Lonsxder _the:_ReadFﬂe() ﬁmctmn in thezé :

] return value

l

BOOL ReadFile ¢ (HANDLE file,
LPVOID buffer,
DWORD bytes To Read, | parameters}:
LPDWORD bytes Read, S
. LPOVER 1) ; L
function name POVERLAPPED  ovl); o

Figure 2.2 The AP! for the ReadFile( furction. -
A description ofthe parameters passed to ReadFile() s as follows:
° HANDLE ﬁle—the fﬂe to be read

from

¢ DWORD bytesTc:)R':e_ad—@the _m;mb_e'r' of 'by'tes_'tti b_e _-rea_'d mto th buffér: e

® LPDWORD bytesRead —the number of bytes read during the lastread.
e LPOVERLAPPED ovl—indicates if overlapped 1/0 is being used.

function and the return values the programmer can expect. Three of the most
common APIs available to application programmers are the Win32 API for
Windows systems, the POSIX API for POSIX-based systems (which includes
virtually all versions of UNIX, Linux, and Mac OS X), and the Java API for
designing programs that run on the Java virtual machine.

Note that the system-call names used throughout this text are generic
examples. Each operating system has its own name for each system call.

Behind the scenes, the functions that make up an API typically invoke the
actual system calls on behalf of the application programmer. For example,
the Win32 function CreateProcess() (which unsurprisingly is used to create a
new process) actually calls the NTCreateProcess() system call in the Windows
kernel. Why would an application programmer prefer programming according
to an API rather than invoking actual system calls? There are several reasons for
doing so. One benefit of programming according to an API concerns program
portability: An application programmer designing a program using an API can
expect her program to compile and run on any system that supports the same
API (although in reality, architectural differences often make this more difficult
than it may appear). Furthermore, actual system calls can often be more detailed
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e Process control s
o end, abort
o load, execute
o create process, terminate process
o get process attributes, set process attributes
o wait for time
o wait event, signal event
o allocate and free memory

¢ File management
o create file, delete file

o open, close
o read, write, reposition
o get file attributes, set file attributes

e Device management
o request device, release device

o read, write, reposition
o get device attributes, set device attributes
o logically attach or detach devices

e [nformation maintenance
o get time or date, set time or date

o get system data, set system data
o get process, file, or device attributes
o set process, file, or device attributes

¢ Communications
o create, delete communication connection

o send, receive messages
o transfer status information

o attach or detach remote devices

Figure 2.5 Types of system calls.

invoking command interpreter. The command interpreter then reads the next
command. In an interactive system, the command interpreter simply continues
with the next command; it is assumed that the user will issue an appropriate
command to respond to any error. In a GUI system, a pop-up window might
alert the user to the error and ask for guidance. In a batch system, the command
interpreter usually terminates the entire job and continues with the next job.
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EXAMPLE OF STANDARD C LI

| #include <stdio.h>
| intmain ()

printf ("Greetings");

return o;

standard C library

write ()
system call

ure26 Clubraryhandlmg ofwrlte() e

 Fig

Some systems allow control cards to indicate special recovery actions in case
an error occurs. A control card is a batch system concept. It is a command to
manage the execution of a process. If the program discovers an error in its input
and wants to terminate abnormally, it may also want to define an error level.
More severe errors can be indicated by a higher-level error parameter. It is then
possible to combine normal and abnormal termination by defining a normal
termination as an error at level 0. The command interpreter or a following
program can use this error level to determine the next action automatically.

A process or job executing one program may want to load and execute
another program. This feature allows the command interpreter to execute a
program as directed by, for example, a user command, the click of a mouse,
or a batch command. An interesting question is where to return control when
the loaded program terminates. This question is related to the problem of
whether the existing program is lost, saved, or allowed to continue execution
concurrently with the new program.
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# ./all.d ‘pgrep xclock' XEventsQueued .
dtrace: script ‘./all.d’ matched 52377 probes
CPU FUNCTION
0 -> XEventsQueued
0 -> XEventsQueued
-» _XlliTransBytesReadable
<—~ XllTransBytesReadable
-> _XllTransSocketBytesReadable
<~ _XllTransSocketBytesreadable
-> ioctl
-» ioctl
-> getf
->» set_active fd
<- set_active fd
<- getf
-> get udatamodel
<— get_udatamodel

ARARARRCACOCCaQC

OO OO0 OO 0CO0C OO0

->» releasef
-> clear_active_f£fd
<- clear_ active fd
-> cv_broadcast
<- cv_broadcast
<- releasef
<- ioctl
<- loctl
<— _XEventsQueued
<- XEventsQueued

cdaR®®RRRRR

Flgure 2 9 Solans 10 dtrace fonows a system call wuthm the kerneL-,

';sti__ tm_m mcludmg &

: and tracmg tools fostered by rese: Ch at var'ou
~Paradyn project. e

and so on. When the process is done, it executes an exit () system call to
terminate, returning to the invoking process a status code of 0 or a nonzero
error code. This status or error code is then available to the shell or other
programs. Processes are discussed in Chapter 3 with an program example
using the fork () and exec () system calls.
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2.4.2 File Management 5

The file system will be discussed in more detail in Chapters 10 and 11. We can,
however, identify several common system calls dealing with files,

We first need to be able to create and delete files. Either system call
requires the name of the file and perhaps some of the file’s attributes. Once the
file is created, we need to open it and to use it. We may also read, write, or
reposition (rewinding or skipping to the end of the file, for example). Finally,
we need to close the file, indicating that we are no longer using it.

We may need these same sets of operations for directories if we have a
directory structure for organizing files in the file system. In addition, for either
files or directories, we need to be able to determine the values of various
attributes and perhaps to reset them if necessary. File attributes include the
file name, a file type, protection codes, accounting information, and so on.
At least two system calls, get file attribute and set file attribute,
are required for this function. Some operating systems provide many more
calls, such as calls for file move and copy. Others might provide an API that
performs those operations using code and other system calls, and others might
just provide system programs to perform those tasks. If the system programs
are callable by other programs, then each can be considered an API by other
system programs.

2.4.3 Device Management

A process may need several resources to execute—main memory, disk drives,
access to files, and so on. If the resources are available, they can be granted,
and control can be returned to the user process. Otherwise, the process will
have to wait until sufficient resources are available.

The various resources controlled by the operating sysstem can be thought
of as devices. Some of these devices are physical devices (for example, tapes),
while others can be thought of as abstract or virtual devices (for example,
files). If there are multiple users of the system, the system may require us to
first request the device, to ensure exclusive use of it. After we are finished
with the device, we release it. These functions are similar to the open and
close system calls for files. Other operating systems allow unmanaged access
to devices. The hazard then is the potential for device contention and perhaps
deadlock, which is described in Chapter 7.

Once the device has been requested (and allocated to us), we can read,
write, and (possibly) reposition the device, just as we can with files. In fact,
the similarity between I/0 devices and files is so great that many operating
systems, including UNIX, merge the two into a combined file-device structure.
In this case, a set of system calls is used on files and devices. Sometimes,
1/0 devices are identified by special file names, directory placement, or file
attributes.

The Ul can also make files and devices appear to be similar, even though
the underlying system calls are dissimilar. This is another example of the many
design decisions that go into building an operating system and user interface.

2.4.4 Information Maintenance

Many system calls exist simply for the purpose of transferring information
between the user program and the operating system. For example, most
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systems have a system call to return the current time and date. Other system
calls may return information about the system, such as the number of current
users, the version number of the operating system, the amount of free memory
or disk space, and so on.

In addition, the operating system keeps information about all its processes,
and system calls are used to access this information. Generally, calls are
also used to reset the process information (get process attributes and
set process attributes). In Section 3.1.3, we discuss what information is
normally kept.

2.4.5 Communication

There are two common models of interprocess communication: the message-
passing model and the shared-memory model. In the message-passing model,
the communicating processes exchange messages with one another to transfer
information. Messages can be exchanged between the processes either directly
or indirectly through a common mailbox. Before communication can take
place, a connection must be opened. The name of the other communicator
must be known, be it another process on the same system or a process on
another computer connected by a communications network. Each computer
in a network has a fost name by which it is commonly known. A host also
has a network identifier, such as an IP address. Similarly, each process has
a process name, and this name is translated into an identifier by which the
operating system can refer to the process. Theget hostidandget processid
system calls do this translation. The identifiers are then passed to the general-
purpose open and close calls provided by the file system or to specific
open connection and close connection system calls, depending on the
system’s model of communication. The recipient process usually must give its
permission for communication to take place with an accept connection call.
Most processes that will be receiving connections are special-purpose dacnons,
which are systems programs provided for that purpose. They execute a wait
for connectioncalland are awakened whena connection is made. The source
of the communication, known as the client, and the receiving daemon, known as
a server, then exchange messages by using read message and write message
system calls. The close connection call terminates the communication.

In the shared-memory model, processes use shared memory create and
shared memory attach system calls to create and gain access to regions of
memory owned by other processes. Recall that, normally, the operating system
tries to prevent one process from accessing another process’s memory. Shared
memory requires that two or more processes agree to remove this restriction.
They can then exchange information by reading and writing data in the shared
areas. The form of the data and the location are determined by the processes and
are not under the operating system’s control. The processes are also responsible
for ensuring that they are not writing to the same location simultaneously. Such
mechanisms are discussed in Chapter 6. In Chapter 4, we look at a variation of
the process scheme—threads—in which memory is shared by default.

Both of the models just discussed are common in operating systems,
and most systems implement both. Message passing is useful for exchanging
smaller amounts of data, because no conflicts need be avoided. Itis also easier to
implement than is shared memory for intercomputer communication. Shared
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memory allows maximum speed and convenience of communication, since it
can be done at memory speeds when it takes place within a computer. Problems
exist, however, in the areas of protection and synchronization between the
processes sharing memory.

System Programs

Another aspect of a modern system is the collection of system programs. Recall
Figure 1.1, which depicted the logical computer hierarchy. At the lowest level is
hardware. Next is the operating system, then the system programs, and finally
the application programs. System programs provide a convenient environment
for program development and execution. Some of them are simply user
interfaces to system calls; others are considerably more complex. They can
be divided into these categories:

e File management. These programs create, delete, copy, rename, print,
dump, list, and generally manipulate files and directories.

e Status information. Some programs simply ask the system for the date,
time, amount of available memory or disk space, number of users, or
similar status information. Others are more complex, providing detailed
performance, logging, and debugging information. Typically, these pro-
grams format and print the output to the terminal or other output devices
or files or display it in a window of the GUL Some systems also support a
registry, which is used to store and retrieve configuration information.

e File modification. Several text editors may be available to create and
modify the content of files stored on disk or other storage devices. There
may also be special commands to search contents of files or perform
transformations of the text.

e Programming-language support. Compilers, assemblers, debuggers and
interpreters for common programming languages (such as C, C++, Java,
Visual Basic, and PERL) are often provided to the user with the operating
system.

¢ Program loading and execution. Once a program is assembled or com-
piled, it must be loaded into memory to be executed. The system may
provide absolute loaders, relocatable loaders, linkage editors, and overlay
loaders. Debugging systems for either higher-level languages or machine
language are needed as well.

e Communications. These programs provide the mechanism for creating
virtual connections among processes, users, and computer systems. They
allow users to send messages to one another’s screens, to browse web
pages, to send electronic-mail messages, to log in remotely, or to transfer
files from one machine to another.

In addition to systems programs, most operating systems are supplied
with programs that are useful in solving common problems or performing
common operations. Such programs include web browsers, word processors
and text formatters, spreadsheets, database systems, compilers, plotting and
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statistical-analysis packages, and games. These programs are known as system
utilities or application programs.

The view of the operating system seen by most users is defined by the
application and system programs, rather than by the actual system calls.
Consider PCs. When his computer is running the Mac OS X operating system, a
user might see the GUI, featuring a mouse and windows interface. Alternatively,
or even in one of the windows, he might have a command-line UNIX shell. Both
use the same set of system calls, but the system calls look different and act in
different ways.

Operating-System Design and Implementation

In this section, we discuss problems we face in designing and implementing an
operating system. There are, of course, no complete solutions to such problems,
but there are approaches that have proved successful.

2.6.1 Design Goals

The first problem in designing a system is to define goals and specifications.
At the highest level, the design of the system will be affected by the choice of
hardware and the type of system: batch, time shared, single user, multiuser,
distributed, real time, or general purpose.

Beyond this highest design level, the requirements may be much harder to
specify. The requirements can, however, be divided into two basic groups: user
goals and systemn goals.

Users desire certain obvious properties in a system: The system should be
convenient to use, easy to learn and to use, reliable, safe, and fast. Of course,
these specifications are not particularly useful in the system design, since there
is no general agreement on how to achieve them.

A similar set of requirements can be defined by those people who must
design, create, maintain, and operate the system: The system should be easy
to design, implement, and maintain; it should be flexible, reliable, error free,
and efficient. Again, these requirements are vague and may be interpreted in
various ways.

There is, in short, no unique solution to the problem of defining the
requirements for an operating system. The wide range of systems in existence
shows that different requirements can result in a large variety of solutions for
different environments. For example, the requirements for VxWorks, a real-
time operating system for embedded systems, must have been substantially
different from those for MVS, a large multiuser, multiaccess operating system
for IBM mainframes.

Specifying and designing an operating system is a highly creative task.
Although no textbook can tell you how to do it, general principles have
been developed in the field of software engineering, and we turn now to
a discussion of some of these principles.

2.6.2 Mechanisms and Policies

One important principle is the separation of policy from mechanism. Mecha-
nisms determine /10w to do something; policies determine what will be done.
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For example, the timer construct (see Section 1.5.2) is a mechanism for ensuring
CPU protection, but deciding how long the timer is to be set for a particular
user is a policy decision.

The separation of policy and mechanism is important for flexibility. Policies
are likely to change across places or over time. In the worst case, each change
in policy would require a change in the underlying mechanism. A general
mechanism insensitive to changes in policy would be more desirable. A change
in policy would then require redefinition of only certain parameters of the
system. For instance, consider a mechanism for giving priority to certain types
of programs over others. If the mechanism is properly separated from policy,
it can be used to support a policy decision that I/O-intensive programs should
have priority over CPU-intensive ones or to support the opposite policy.

Microkernel-based operating systems (Section 2.7.3) take the separation of
mechanism and policy to one extreme by implementing a basic set of primitive
building blocks. These blocks are almost policy free, allowing more advanced
mechanisms and policies to be added via user-created kernel modules or via
user programs themselves. As an example, consider the history of UNIX. At
first, it had a time-sharing scheduler. In the latest version of Solaris, scheduling
is controlled by loadable tables. Depending on the table currently loaded,
the system can be time shared, batch processing, real time, fair share, or
any combination. Making the scheduling mechanism general purpose allows
vast policy changes to be made with a single load-new-table command. At
the other extreme is a system such as Windows, in which both mechanism
and policy are encoded in the system to enforce a global look and feel. All
applications have similar interfaces, because the interface itself is built into
the kernel and system libraries. The Mac OS X operating system has similar
functionality.

Policy decisions are important for all resource allocation. Whenever it is
necessary to decide whether or not to allocate a resource, a policy decision must
be made. Whenever the question is iow rather than what, it is a mechanism that
must be determined.

2.6.3 Implementation

Once an operating system is designed, it must be implemented. Traditionally,
operating systems have been written in assembly language. Now, however,
they are most commonly written in higher-level languages such as C or C++.

The first system that was not written in assembly language was probably
the Master Control Program (MCP) for Burroughs computers. MCP was written
in a variant of ALGOL. MULTICS, developed at MIT, was written mainly in
PL/1. The Linux and Windows XP operating systems are written mostly in C,
although there are some small sections of assembly code for device drivers and
for saving and restoring the state of registers.

The advantages of using a higher-level language, or at least a systems-
implementation language, for implementing operating systems are the same
as those accrued when the language is used for application programs: The
code can be written faster, is more compact, and is easier to understand and
debug. In addition, improvements in compiler technology will improve the
generated code for the entire operating system by simple recompilation. Finally,
an operating system is far easier to port—to move to some other hardware—
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if it is written in a higher-level language. For example, MS-DOS was written in
Intel 8088 assembly language. Consequently, it is available on only the Intel
family of CPUs. The Linux operating system, in contrast, is written mostly in C
and is available on a number of different CPUs, including Intel 80X86, Motorola
680X0, SPARC, and MIPS RX000.

The only possible disadvantages of implementing an operating system in a
higher-level language are reduced speed and increased storage requirements.
This, however, is no longer a major issue in today’s systems. Although an
expert assembly-language programmer can produce efficient small routines,
for large programs a modern compiler can perform complex analysis and apply
sophisticated optimizations that produce excellent code. Modern processors
have deep pipelining and multiple functional units that can handle complex
dependencies that can overwhelm the limited ability of the human mind to
keep track of details.

As is true in other systems, major performance improvements in operating
systems are more likely to be the result of better data structures and algorithms
than of excellent assembly-language code. In addition, although operating sys-
tems are large, only a small amount of the code is critical to high performance;
the memory manager and the CPU scheduler are probably the most critical rou-
tines. After the system is written and is working correctly, bottleneck routines
can be identified and can be replaced with assembly-language equivalents.

To identify bottlenecks, we must be able to monitor system performance.
Code must be added to compute and display measures of system behavior.
In a number of systems, the operating system does this task by producing
trace listings of system behavior. All interesting events are logged with their
time and important parameters and are written to a file. Later, an analysis
program can process the log file to determine system performance and to
identify bottlenecks and inefficiencies. These same traces can be run as input
for a simulation of a suggested improved system. Traces also can help people
to find errors in operating-system behavior.

Operating-System Structure

A system as large and complex as a modern operating system must be
engineered carefully if it is to function properly and be modified easily. A
common approach is to partition the task into small components rather than
have one monolithic system. Each of these modules should be a well-defined
portion of the system, with carefully defined inputs, outputs, and functions.
We have already discussed briefly in Chapter 1 the common components
of operating systems. In this section, we discuss how these components are
interconnected and melded into a kernel.

2.7.1 Simple Structure

Many commercial systems do not have well-defined structures. Frequently,
such operating systems started as small, simple, and limited systems and then
grew beyond their original scope. MS-DOS is an example of such a system. It was
originally designed and implemented by a few people who had no idea that it
would become so popular. It was written to provide the most functionality in
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Kernel

Figure 2.11 UNIX system structure.

separated into components. Information hiding is also important, because it
leaves programmers free to implement the low-level routines as they see fit,
provided that the external interface of the routine stays unchanged and that
the routine itself performs the advertised task.

A system can be made modular in many ways. One method is the layered
approach, in which the operating system is broken up into a number of layers
(levels). The bottom layer (layer 0) is the hardware; the highest (layer N) is the
user interface. This layering structure is depicted in Figure 2.12.

An operating-system layer is an implementation of an abstract object made
up of data and the operations that can manipulate those data. A typical
operating-system layer—say, layer M—consists of data structures and a set
of routines that can be invoked by higher-level layers. Layer M, in turn, can
invoke operations on lower-level layers.

The main advantage of the layered approach is simplicity of construction
and debugging. The layers are selected so that each uses functions (operations)
and services of only lower-level layers. This approach simplifies debugging
and system verification. The first layer can be debugged without any concern
for the rest of the system, because, by definition, it uses only the basic hardware
(which is assumed correct) to implement its functions. Once the first layer is
debugged, its correct functioning can be assumed while the second layer is
debugged, and so on. If an error is found during the debugging of a particular
layer, the error must be on that layer, because the layers below it are already
debugged. Thus, the design and implementation of the system is simplified.

Each layer is implemented with only those operations provided by lower-
level layers. A layer does not need to know how these operations are
implemented; it needs to know only what these operations do. Hence, each
layer hides the existence of certain data structures, operations, and hardware
from higher-level layers.

The major difficulty with the layered approach involves appropriately
defining the various layers. Because a layer can use only lower-level layers,
careful planning is necessary. For example, the device driver for the backing
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implementing them as system and user-level programs. The result is a sthaller
kernel. There is little consensus regarding which services should remain in the
kernel and which should be implemented in user space. Typically, however,
microkernels provide minimal process and memory management, in addition
to a communication facility.

The main function of the microkernel is to provide a communication facility
between the client program and the various services that are also running
in user space. Communication is provided by message passing, which was
described in Section 2.4.5. For example, if the client program wishes to access
a file, it must interact with the file server. The client program and service never
interact directly. Rather, they communicate indirectly by exchanging messages
with the microkernel.

One benefit of the microkernel approach is ease of extending the operating
system. All new services are added to user space and consequently do not
require modification of the kernel. When the kernel does have to be modified,
the changes tend to be fewer, because the microkernel is a smaller kernel.
The resulting operating system is easier to port from one hardware design
to another. The microkernel also provides more security and reliability, since
most services are running as user—rather than kernel—processes. If a service
fails, the rest of the operating system remains untouched.

Several contemporary operating systems have used the microkernel
approach. Tru64 UNIX (formerly Digital UNIX) provides a UNIX interface to
the user, but it is implemented with a Mach kernel. The Mach kernel maps
UNIX system calls into messages to the appropriate user-level services.

Another example is QNX. QNX is a real-time operating system that is also
based on the microkernel design. The QNX microkernel provides services
for message passing and process scheduling. It also handles low-level net-
work communication and hardware interrupts. All other services in QNX are
provided by standard processes that run outside the kernel in user mode.

Unfortunately, microkernels can suffer from performance decreases due
to increased system function overhead. Consider the history of Windows NT.
The first release had a layered microkernel organization. However, this version
delivered low performance compared with that of Windows 95. Windows NT
4.0 partially redressed the performance problem by moving layers from user
space to kernel space and integrating them more closely. By the time Windows
XP was designed, its architecture was more monolithic than microkernel.

2.7.4 Modules

Perhaps the best current methodology for operating-system design involves
using object-oriented programming techniques to create a modular kernel.
Here, the kernel has a set of core components and dynamically links in
additional services either during boot time or during run time. Such a
strategy uses dynamically loadable modules and is common in modern
implementations of UNIX, such as Solaris, Linux, and Mac Os X. For example, the
Solaris operating system structure, shown in Figure 2.13, is organized around
a core kernel with seven types of loadable kernel modules:

1. Scheduling classes

2. File systems
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Figure 2.13 Solaris loadable modules.
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5. STREAMS modules

6. Miscellaneous

7.

Device and bus drivers

Such a design allows the kernel to provide core services yet also allows
certain features to be implemented dynamically. For example, device and
bus drivers for specific hardware can be added to the kernel, and support
for different file systems can be added as loadable modules. The overall
result resembles a layered system in that each kernel section has defined,
protected interfaces; but it is more flexible than a layered system in that any
module can call any other module. Furthermore, the approach is like the
microkernel approach in that the primary module has only core functions
and knowledge of how to load and communicate with other modules; but it
is more efficient, because modules do not need to invoke message passing in
order to communicate.

The Apple Macintosh Mac OS X operating system uses a hybrid structure.
Mac OS X (also known as Darwin) structures the operating system using a
layered technique where one layer consists of the Mach microkernel. The
structure of Mac OS X appears in Figure 2.14.

The top layers include application environments and a set of services
providing a graphical interface to applications. Below these layers is the kernel
environment, which consists primarily of the Mach microkernel and the BSD
kernel. Mach provides memory management; support for remote procedure
calls (RPCs) and interprocess communication (IPC) facilities, including message
passing; and thread scheduling. The BSD component provides a BSD command
line interface, support for networking and file systems, and an implementation
of POSIX APIs, including Pthreads. In addition to Mach and BSD, the kernel
environment provides an 1/0 kit for development of device drivers and
dynamically loadable modules (which Mac OS X refers to as kernel extensions).
As shown in the figure, applications and common services can make use of
either the Mach or BSD facilities directly.
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Figure 2.14 The Mac OS X structure.

Virtual Machines

The layered approach described in Section 2.7.2 is taken to its logical conclusion
in the concept of a virtual machine. The fundamental idea behind a virtual
machine is to abstract the hardware of a single computer (the CPU, memory,
disk drives, network interface cards, and so forth) into several different
execution environments, thereby creating the illusion that each separate
execution environment is running its own private computer.

By using CPU scheduling (Chapter 5) and virtual-memory techniques
(Chapter 9), an operating system can create the illusion that a process has
its own processor with its own (virtual) memory. Normally, a process has
additional features, such as system calls and a file system, that are not provided
by the bare hardware. The virtual-machine approach does not provide any such
additional functionality but rather provides an interface that is identical to the
underlying bare hardware. Each process is provided with a (virtual) copy of
the underlying computer (Figure 2.15).

There are several reasons for creating a virtual machine, all of which
are fundamentally related to being able to share the same hardware yet run
several different execution environments (that is, different operating systems)
concurrently. We will explore the advantages of virtual machines in more detail
in Section 2.8.2. Throughout much of this section, we discuss the VM operating
system for IBM systems, as it provides a useful working example; furthermore
IBM pioneered the work in this area.

A major difficulty with the virtual-machine approach involves disk sys-
tems. Suppose that the physical machine has three disk drives but wants to
support seven virtual machines. Clearly, it cannot allocate a disk drive to
each virtual machine, because the virtual-machine software itself will need
substantial disk space to provide virtual memory and spooling. The solution
is to provide virtual disks—termed minidisks in [BM’s VM operating system
—that are identical in all respects except size. The system implements each
minidisk by allocating as many tracks on the physical disks as the minidisk
needs. Obviously, the sum of the sizes of all minidisks must be smaller than
the size of the physical disk space available.

Users thus are given their own virtual machines. They can then run any of
the operating systems or software packages that are available on the underlying
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spooled) or more time (because it is interpreted). In addition, the CPU is
being multiprogrammed among many virtual machines, further slowing down
the virtual machines in unpredictable ways. In the extreme case, it may be
necessary to simulate all instructions to provide a true virtual machine. VM
works for IBM machines because normal instructions for the virtual machines
can execute directly on the hardware. Only the privileged instructions (needed
mainly for I/0) must be simulated and hence execute more slowly.

2.8.2 Benefits

The virtual-machine concept has several advantages. Notice that, in this
environment, there is complete protection of the various system resources.
Each virtual machine is completely isolated from all other virtual machines,
so there are no protection problems. At the same time, however, there is no
direct sharing of resources. Two approaches to provide sharing have been
implemented. First, it is possible to share a minidisk and thus to share files.
This scheme is modeled after a physical shared disk but is implemented by
software. Second, it is possible to define a network of virtual machines, each
of which can send information over the virtual communications network.
Again, the network is modeled after physical communication networks but
is implemented in software.

Such a virtual-machine system is a perfect vehicle for operating-systems
research and development. Normally, changing an operating system is a
difficult task. Operating systems are large and complex programs, and it is
difficult to be sure that a change in one part will not cause obscure bugs
in some other part. The power of the operating system makes changing it
particularly dangerous. Because the operating system executes in kernel mode,
a wrong change in a pointer could cause an error that would destroy the entire
file system. Thus, it is necessary to test all changes to the operating system
carefully.

The operating system, however, runs on and controls the entire machine.
Therefore, the current system must be stopped and taken out of use while
changes are made and tested. This period is commonly called system-
development time. Since it makes the system unavailable to users, system-
development time is often scheduled late at night or on weekends, when system
load is low.

A virtual-machine system can eliminate much of this problem. System
programmers are given their own virtual machine, and system development is
done on the virtual machine instead of on a physical machine. Normal system
operation seldom needs to be disrupted for system development.

2.8.3 Examples

Despite the advantages of virtual machines, they received little attention
for a number of years after they were first developed. Today, however,
virtual machines are coming back into fashion as a means of solving system
compatibility problems. In this section, we explore two popular contemporary
virtual machines: VMware and the Java virtual machine. As we will see,
these virtual machines typically run on top of an operating system of any of
the design types discussed earlier. Thus, operating system design methods—
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2.8.3.2 The Java Virtual Machine g’

Java is a popular object-oriented programming language introduced by Sun
Microsystems in 1995. In addition to a language specification and a large API
library, Java also provides a specification for a Java virtual machine—or JVM.

Java objects are specified with the class construct; a Java program
consists of one or more classes. For each Java class, the compiler produces
an architecture-neutral bytecode output (.class) file that will run on any
implementation of the JVM.

The JVMis a specification for an abstract computer. It consists of a class
loader and a Java interpreter that executes the architecture-neutral bytecodes,
as diagrammed in Figure 2.17. The class loader loads the compiled .class
files from both the Java program and the Java API for execution by the Java
interpreter. After a class is loaded, the verifier checks that the .class file is
valid Java bytecode and does not overflow or underflow the stack. It also
ensures that the bytecode does not perform pointer arithmetic, which could
provide illegal memory access. If the class passes verification, it is run by the
Java interpreter. The JVM also automatically manages memory by performing
garbage collection—the practice of reclaiming memory from objects no longer
in use and returning it to the system. Much research focuses on garbage
collection algorithms for increasing the performance of Java programs in the
virtual machine.

The JVM may be implemented in software on top of a host operating
system, such as Windows, Linux, or Mac OS X, or as part of a web browser.
Alternatively, the JvM may be implemented in hardware on a chip specifically
designed to run Java programs. If the JVM is implemented in software, the
Java interpreter interprets the bytecode operations one at a time. A faster
software technique is to use a just-in-time (JIT) compiler. Here, the first time a
Java method is invoked, the bytecodes for the method are turned into native
machine language for the host system. These operations are then cached so that
subsequent invocations of a method are performed using the native machine
instructions and the bytecode operations need not be interpreted all over again.
A technique that is potentially even faster is to run the JVM in hardware on a
special Java chip that executes the Java bytecode operations as native code, thus
bypassing the need for either a software interpreter or a just-in-time compiler.

F--1~2| class loader |e-t--{

| Java |

| interpreter |

| I |
\ 4

| fostystem
{(Windows, Linux, etc.)

Figure 2.17 The Java virtual machine.
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Operating-System Generation ’

It is possible to design, code, and implement an operating system specifically
for one machine at one site. More commonly, however, operating systems
are designed to run on any of a class of machines at a variety of sites with
a variety of peripheral configurations. The system must then be configured
or generated for each specific computer site, a process sometimes known as
system generation (SYSGEN).

The operating system is normally distributed on disk or CD-ROM. To
generate a system, we use a special program. The SYSGEN program reads from
a given file, or asks the operator of the system for information concerning the
specific configuration of the hardware system, or probes the hardware directly
to determine what components are there. The following kinds of information
must be determined.

e What CPU is to be used? What options (extended instruction sets, floating-
point arithmetic, and so on) are installed? For multiple CPU systems, each
CPU must be described.

e How much memory is available? Some systems will determine this value
themselves by referencing memory location after memory location until an
“illegal address” fault is generated. This procedure defines the final legal
address and hence the amount of available memory.

e What devices are available? The system will need to know how to address
each device (the device number), the device interrupt number, the device’s
type and model, and any special device characteristics.

o What operating-system options are desired, or what parameter values are
to be used? These options or values might include how many buffers of
which sizes should be used, what type of CPU-scheduling algorithm is
desired, what the maximum number of processes to be supported is, and
SO On.

Once this information is determined, it can be used in several ways. At one
extreme, a system administrator can use it to modify a copy of the source code of
the operating system. The operating system then is completely compiled. Data
declarations, initializations, and constants, along with conditional compilation,
produce an output object version of the operating system that is tailored to the
system described.

At a slightly less tailored level, the system description can cause the
creation of tables and the selection of modules from a precompiled library.
These modules are linked together to form the generated operating system.
Selection allows the library to contain the device drivers for all supported 1/0
devices, but only those needed are linked into the operating system. Because.
the system is not recompiled, system generation is faster, but the resulting
system may be overly general.

At the other extreme, it is possible to construct a system that is completely
table driven. All the code is always part of the system, and selection occurs at
execution time, rather than at compile or link time. System generation involves
simply creating the appropriate tables to describe the system.
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The major differences among these approaches are the size and geneyality
of the generated system and the ease of modification as the hardware
configuration changes. Consider the cost of modifying the system to support a
newly acquired graphics terminal or another disk drive. Balanced against that
cost, of course, is the frequency (or infrequency) of such changes.

System Boot

After an operating system is generated, it must be made available for use by
the hardware. But how does the hardware know where the kernel is or how to
load that kernel? The procedure of starting a computer by loading the kernel
is known as booting the system. On most computer systems, a small piece of
code known as the bootstrap program or bootstrap loader locates the kernel,
loads it into main memory, and starts its execution. Some computer systems,
such as PCs, use a two-step process in which a simple bootstrap loader fetches
a more complex boot program from disk, which in turn loads the kernel.

When a CPU receives a reset event—for instance, when it is powered up
or rebooted—the instruction register is loaded with a predefined memory
location, and execution starts there. At that location is the initial bootstrap
program. This program is in the form of read-only memory (ROM), because
the RAM is in an unknown state at system startup. ROM is convenient because
it needs no initialization and cannot be infected by a computer virus.

The bootstrap program can perform a variety of tasks. Usually, one task
is to run diagnostics to determine the state of the machine. If the diagnostics
pass, the program can continue with the booting steps. It can also initialize all
aspects of the system, from CPU registers to device controllers and the contents
of main memory. Sooner or later, it starts the operating system.

Some systems—such as cellular phones, PDAs, and game consoles—store
the entire operating system in ROM. Storing the operating system in ROM is
suitable for small operating systems, simple supporting hardware, and rugged
operation. A problem with this approach is that changing the bootstrap code
requires changing the ROM hardware chips. Some systems resolve this problem
by using erasable programmable read-only memory (EPROM), which is read-
only except when explicitly given a command to become writable. All forms
of ROM are also known as firmware, since their characteristics fall somewhere
between those of hardware and those of software. A problem with firmware
in general is that executing code there is slower than executing code in RAM.
Some systems store the operating system in firmware and copy it to RAM for
fast execution. A final issue with firmware is that it is relatively expensive, so
usually only small amounts are available.

For large operating systems (including most general-purpose operating
systems like Windows, Mac OS X, and UNIX) or for systems that change
frequently, the bootstrap loader is stored in firmware, and the operating system
is on disk. In this case, the bootstrap runs diagnostics and has a bit of code
that can read a single block at a fixed location (say block zero) from disk into
memory and execute the code from that boot block. The program stored in the
boot block may be sophisticated enough to load the entire operating system
into memory and begin its execution. More typically, it is simple code (as it fits
in a single disk block) and only knows the address on disk and length of the
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remainder of the bootstrap program. All of the disk-bound bootstrap, ard the
operating system itself, can be easily changed by writing new versions to disk.
A disk that has a boot partition (more on that in section 12.5.1) is called a boot
disk or system disk.

Now that the full bootstrap program has been loaded, it can traverse the
file system to find the operating system kernel, load it into memory, and start
its execution. It is only at this point that the system is said to be running.

Summary

Operating systems provide a number of services. At the lowest level, system
calls allow a running program to make requests from the operating system
directly. At a higher level, the command interpreter or shell provides a
mechanism for a user to issue a request without writing a program. Commands
may come from files during batch-mode execution or directly from a terminal
when in an interactive or time-shared mode. System programs are provided to
satisfy many common user requests.

The types of requests vary according to level. The system-call level must
provide the basic functions, such as process control and file and device
manipulation. Higher-level requests, satisfied by the command interpreter or
system programs, are translated into a sequence of system calls. System services
can be classified into several categories: program control, status requests, and
1/0 requests. Program errors can be considered implicit requests for service.

Once the system services are defined, the structure of the operating system
can be developed. Various tables are needed to record the information that
defines the state of the computer system and the status of the system’s jobs.

The design of a new operating system is a major task. It is important that
the goals of the system be well defined before the design begins. The type of
system desired is the foundation for choices among various algorithms and
strategies that will be needed.

Since an operating system is large, modularity is important. Designing a
system as a sequence of layers or using a microkernel is considered a good
technique. The virtual-machine concept takes the layered approach and treats
both the kernel of the operating system and the hardware as though they were
hardware. Even other operating systems may be loaded on top of this virtual
machine.

Throughout the entire operating-system design cycle, we must be careful
to separate policy decisions from implementation details (mechanisms). This
separation allows maximum flexibility if policy decisions are to be changed
later.

Operating systems are now almost always written in a systems-
implementation language or in a higher-level language. This feature improves
their implementation, maintenance, and portability. To create an operating .
system for a particular machine configuration, we must perform system
generation.

For a computer system to begin running, the CPU must initialize and start
executing the bootstrap program in firmware. The bootstrap can execute the
operating system directly if the operating system is also in the firmware, or
it can complete a sequence in which it loads progressively smarter programs
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from firmware and disk until the operating system itself is loaded into memory
and executed.

Exercises

2.1

22

2.3

24

2.5

2.6

2.7

2.8

2.9
2.10

2.11

2.12

2.13

2.14

The services and functions provided by an operating system can be
divided into two main categories. Briefly describe the two categories
and discuss how they differ.

List five services provided by an operating system that are designed to
make it more convenient for users to use the computer system. In what
cases it would be impossible for user-level programs to provide these
services? Explain.

Describe three general methods for passing parameters to the operating
system.,

Describe how you could obtain a statistical profile of the amount of time
spent by a program executing different sections of its code. Discuss the
importance of obtaining such a statistical profile.

What are the five major activities of an operating system with regard to
file management?

What are the advantages and disadvantages of using the same system-
call interface for manipulating both files and devices?

What is the purpose of the command interpreter? Why is it usually
separate from the kernel? Would it be possible for the user to develop
a new command interpreter using the system-call interface provided by
the operating system?

What are the two models of interprocess communication? What are the
strengths and weaknesses of the two approaches?

Why is the separation of mechanism and policy desirable?

Why does Java provide the ability to call from a Java program native
methods that are written in, say, C or C++? Provide an example of a
situation in which a native method is useful.

It is sometimes difficult to achieve a layered approach if two components
of the operating system are dependent on each other. Identify a scenario
in which it is unclear how to layer two system components that require
tight coupling of their functionalities.

What is the main advantage of the microkernel approach to system
design? How do user programs and system services interact in a
microkernel architecture? What are the disadvantages of using the
microkernel approach?

In what ways is the modular kernel approach similar to the layered
approach? In what ways does it differ from the layered approach?

What is the main advantage for an operating-system designer of using
a virtual-machine architecture? What is the main advantage for a user?
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2.15 Why is a just-in-time compiler useful for executing Java programs?

2.16 What is the relationship between a guest operating system and a host
operating system in a system like VMware? What factors need to be
considered in choosing the host operating system?

2.17 The experimental Synthesis operating system has an assembler incor-
porated in the kernel. To optimize system-call performance, the kernel
assembles routines within kernel space to minimize the path that the
system call must take through the kernel. This approach is the antithesis
of the layered approach, in which the path through the kernel is extended
to make building the operating system easier. Discuss the pros and cons
of the Synthesis approach to kernel design and system-performance
optimization. :

2.18 InSection 2.3, we described a program that copies the contents of one file
to a destination file. This program works by first prompting the user for
the name of the source and destination files. Write this program using
either the Windows32 or POSIX APL Be sure to include all necessary
error checking, including ensuring that the source file exists. Once you
have correctly designed and tested the program, if you used a system
that supports it, run the program using a utility that traces system calls.
Linux systems provide the ptrace utility, and Solaris systems use the
truss or dtrace command. On Mac O5 X, the ktrace facility provides
similar functionality.

Project—Adding a System Call to the Linux Kernel

In this project, you will study the system call interface provided by the Linux
operating system and how user programs communicate with the operating
system kernel via this interface. Your task is to incorporate a new system call
into the kernel, thereby expanding the functionality of the operating system.

Getting Started

A user-mode procedure call is performed by passing arguments to the called
procedure either on the stack or through registers, saving the current state and
the value of the program counter, and jumping to the beginning of the code
corresponding to the called procedure. The process continues to have the same
privileges as before.

System calls appear as procedure calls to user programs, but result in
a change in execution context and privileges. In Linux on the Intel 386
architecture, a system call is accomplished by storing the system call number
into the EAX register, storing arguments to the system call in other hardware .
registers, and executing a trap instruction (which is the INT 0x80 assembly
instruction). After the trap is executed, the system call number is used to index
into a table of code pointers to obtain the starting address for the handler
code implementing the system call. The process then jumps to this address
and the privileges of the process are switched from user to kernel mode. With
the expanded privileges, the process can now execute kernel code that might
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include privileged instructions that cannot be executed in user mode, The
kernel code can then perform the requested services such as interacting with
1/0 devices, perform process management and other such activities that cannot
be performed in user mode.

The system call numbers for recent versions of the Linux kernel
are listed in /usr/src/linux-2.x/include/asm-i386/unistd.h. (For
instance, __NR_close, which corresponds to the system call close()
that is invoked for closing a file descriptor, is defined as value 6.) The
list of pointers to system call handlers is typically stored in the file
/usr/src/linux-2.x/arch/i1386/kernel/entry.S under the heading
ENTRY (sys_call table). Notice that sys_close is stored at entry numbered
6 in the table to be consistent with the system call number defined inunistd.h
file. (The keyword .long denotes that the entry will occupy the same number
of bytes as a data value of type long.)

Building a New Kernel

Before adding a system call to the kernel, you must familiarize yourself with
the task of building the binary for a kernel from its source code and booting
the machine with the newly built kernel. This activity comprises the following
tasks, some of which are dependent on the particular installation of the Linux
operating system.

¢ Obtain the kernel source code for the Linux distribution. If the source code
package has been previously installed on your machine, the corresponding
files might be available under /usr/src/linux or /usr/src/linux-2.x
(where the suffix corresponds to the kernel version number). If the package
has not been installed earlier, it can be downloaded from the provider of
your Linux distribution or from http://www.kernel.org.

® Learn how to configure, compile, and install the kernel binary. This
will vary between the different kernel distributions, but some typical
commands for building the kernel (after entering the directory where the
kernel source code is stored) include:

© make xconfig
© make dep

© make bzImage

e Add a new entry to the set of bootable kernels supported by the system.
The Linux operating system typically uses utilities such as 1ilo and grub
to maintain a list of bootable kernels, from which the user can choose
during machine boot-up. If your system supports 1ilo, add an entry to
lilo.conf, such as:

image=/boot /bzlmage.mykernel
label=mykernel
root=/dev/hdab

read-only

where /boot/bzImage.mykernel is the kernel image and mykernel is
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the label associated with the new kernel allowing you to choose it during
bootup process. By performing this step, you have the option of either
booting a new kernel or booting the unmodified kernel if the newly built
kernel does not function properly.

Extending Kernel Source

You can now experiment with adding a new file to the set of source files
used for compiling the kernel. Typically, the source code is stored in the
/usr/src/linux-2.x/kernel directory, although that location may differ in
your Linux distribution. There are two options for adding the system call.
The first is to add the system call to an existing source file in this directory.
A second option is to create a new file in the source directory and modify
/usr/src/linux-2.x/kernel/Makefile to include the newly created file
in the compilation process. The advantage of the first approach is that by
modifying an existing file that is already part of the compilation process, the
Makefile does not require modification.

Adding a System Call to the Kernel

Now that you are familiar with the various background tasks corresponding
to building and booting Linux kernels, you can begin the process of adding a
new system call to the Linux kernel. In this project, the system call will have
limited functionality; it will simply transition from user mode to kernel mode,
print a message that is logged with the kernel messages, and transition back to
user mode. We will call this the helloworld system call. While it has only limited
functionality, it illustrates the system call mechanism and sheds light on the
interaction between user programs and the kernel.

e (Create a new file called helloworld. c to define your system call. Include
the header files 1inux/linkage.h and linux/kernel.h. Add the follow-
ing code to this file:

#include <linux/linkage.h>

#include <linux/kernel.hs>

asmlinkage int sys_helloworld() {
printk (KERN_EMERG "hello world!");

return 1;

)

This creates a system call with the name sys_helloworld ().If you choose
to add this system call to an existing file in the source directory, all that is
necessary is to add the sys_helloworld () function to the file you choose.
asmlinkage is a remnant from the days when Linux used both C++
and C code and is used to indicate that the code is written in C.
The printk() function is used to print messages to a kernel log file
and therefore may only be called from the kernel. The kernel mes-
sages specified in the parameter to printk() are logged in the file
/var/log/kernel/warnings. The function prototype for the printk()
call is defined in /usr/include/linux/kernel.h.
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®* Define a new system call number for _ NRhelloworld in
/usr/src/linux-2.x/include/asm-i386/unistd.h. A user program
can use this number to identify the newly added system call. Also be sure
to increment the value for __NR_syscalls, which is also stored in the same
file. This constant tracks the number of system calls currently defined in
the kernel.

¢ Add an entry .long sys_helloworld to the sys_call table defined
in /usr/src/linux-2.x/arch/i386/kernel/entry. S file. As discussed
earlier, the system call number is used to index into this table to find the
position of the handler code for the invoked system call.

¢ Add your file helloworld. c to the Makefile (if you created a new file for
your system call.) Save a copy of your old kernel binary image (in case
there are problems with your newly created kernel.) You can now build
the new kernel, rename it to distinguish it from the unmodified kernel,
and add an entry to the loader configuration files (such as 1ilo.conf).
After completing these steps, you may now boot either the old kernel or
the new kernel that contains your system call inside it.

Using the System Call From a User Program

When you boot with the new kernel it will support the newly defined system
call; it is now simply a matter of invoking this system call from a user program.
Ordinarily, the standard C library supports an interface for system calls defined
for the Linux operating system. As your new system call is not linked into the
standard C library, invoking your system call will require manual intervention.

As noted earlier, a system call is invoked by storing the appropriate value
into a hardware register and performing a trap instruction. Unfortunately, these
are low-level operations that cannot be performed using C language statements
and instead require assembly instructions. Fortunately, Linux provides macros
for instantiating wrapper functions that contain the appropriate assembly
instructions. For instance, the following C program uses the _syscall0()
macro to invoke the newly defined system call:

#include <linux/errnoc.h>
#include <sys/syscall.h>
#include <linux/unistd.h>

_syscall0O (int, helloworld);

main ()

{

helloworld () ;

)

© The _syscall0 macro takes two arguments. The first specifies the type of
the value returned by the system call; the second argument is the name of
the system call. The name is used to identify the system call number that
is stored in the hardware register before the trap instruction is executed.
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If your system call requires arguments, then a different macro (stich as
_syscall0, where the suffix indicates the number of arguments) could be
used to instantiate the assembly code required for performing the system
call.

e Compile and execute the program with the newly built kernel.
There should be a message "hello world!" in the kernel log file
/var/log/kernel/warnings to indicate that the system call has
executed.

As a next step, consider expanding the functionality of your system call.
How would you pass an integer value or a character string to the system call
and have it be printed into the kernel log file? What are the implications for
passing pointers to data stored in the user program’s address space as opposed
to simply passing an integer value from the user program to the kernel using
hardware registers?
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Part Two

Process
Management

A process can be thought of as a program in execution. A process will
Nneed certain resources—such as CPU time, memory, files, and I/0 devices
—to accomplish its task. These resources are allocated to the process
either when it is created or while it is executing.

A process is the unit of work in most systems. Systems consist of
a collection of processes: Operating-system processes execute system
code, and user processes execute user code. All these processes may
execute concurrently.

Although traditionally a process contained only a single thread of
control as it ran, most modern operating systems now support processes
that have multiple threads.

The operating system is responsible for the following activities in
connection with process and thread management: the creation and
deletion of both user and system processes; the scheduling of processes;
and the provision of mechanisms for synchronization, communication,
and deadlock handling for processes.
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Processes

3.1

?

Early computer systems allowed only one program to be executed at a
time. This program had complete control of the system and had access to
all the system’s resources. In contrast, current-day computer systems allow
multiple programs to be loaded into memory and executed concurrently.
This evolution required firmer control and more compartmentalization of the
various programs; and these needs resulted in the notion of a process, which is
a program in execution. A process is the unit of work in a modern time-sharing
system.

The more complex the operating system is, the more it is expected to do on
behalf of its users. Although its main concern is the execution of user programs,
it also needs to take care of various system tasks that are better left outside the
kernel itself. A system therefore consists of a collection of processes: operating-
system processes executing system code and user processes executing user
code. Potentially, all these processes can execute concurrently, with the CPU (or
Crus) multiplexed among them. By switching the CPU between processes, the
operating system can make the computer more productive.

CHAPTER OBJECTIVES

* To introduce the notion of a process — a program in execution, which forms
the basis of all computation.

» To describe the various features of processes, including scheduling,
creation and termination, and communication.

* To describe communication in client—server systems.

Process Concept

A question that arises in discussing operating systems involves what to call all
the CPU activities. A batch system executes jobs, whereas a time-shared system
has wuser programs, or tasks. Even on a single-user system such as Microsoft
Windows, a user may be able to run several programs at one time: a word
processor, a web browser, and an e-mail package. Even if the user can execute
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only one program at a time, the operating system may need to suppoft its
own internal programmed activities, such as memory management. In many
respects, all these activities are similar, so we call all of them processes.

The terms job and process are used almost interchangeably in this text.
Although we personally prefer the term process, much of operating-system
theory and terminology was developed during a time when the major activity
of operating systems was job processing. It would be misleading to avoid
the use of commonly accepted terms that include the word job (such as job
scheduling) simply because process has superseded job.

3.1.1 The Process

Informally, as mentioned earlier, a process is a program in execution. A process
is more than the program code, which is sometimes known as the text section.
It also includes the current activity, as represented by the value of the program
counter and the contents of the processor’s registers. A process generally also
includes the process stack, which contains temporary data (such as function
parameters, return addresses, and local variables), and a data section, which
contains global variables. A process may also include a heap, which is memory
thatis dynamically allocated during process run time. The structure of a process
in memory is shown in Figure 3.1.

We emphasize that a program by itself is not a process; a program is a passive
entity, such as a file containing a list of instructions stored on disk (often called
an executable file), whereas a process is an active entity, with a program counter
specifying the next instruction to execute and a set of associated resources. A
program becomes a process when an executable file is loaded into memory.
Two common techniques for loading executable files are double-clicking an
icon representing the executable file and entering the name of the executable
file on the command line (as in prog.exe or a.out.)

Although two processes may be associated with the same program, they
are nevertheless considered two separate execution sequences. For instance,

max - _
stack
~heap
data
text
0 :

Figure 3.1 Process in memory.
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Figure 3.2 Diagram of process state.

several users may be running different copies of the mail program, or the same
user may invoke many copies of the web browser program. Each of these is a
separate process; and although the text sections are equivalent, the data, heap,
and stack sections vary. It is also common to have a process that spawns many
processes as it runs. We discuss such matters in Section 3.4.

3.1.2 Process State

As a process executes, it changes state. The state of a process is defined in
part by the current activity of that process. Each process may be in one of the
following states:

e New. The process is being created.
e Running. Instructions are being executed.

* Waiting. The process is waiting for some event to occur (such as an I/0
completion or reception of a signal).

e Ready. The process is waiting to be assigned to a processor.

¢ Terminated. The process has finished execution.

These names are arbitrary, and they vary across operating systems. The states
that they represent are found on all systems, however. Certain operating
systems also more finely delineate process states. It is important to realize
that only one process can be running on any processor at any instant. Many
processes may be ready and waiting, however. The state diagram corresponding
to these states is presented in Figure 3.2.

3.1.3 Process Control Block

Each process is represented in the operating system by a process control block
(PCB)—also called a task control block. A PCB is shown in Figure 3.3. It contains
many pieces of information associated with a specific process, including these:

© Process state. The state may be new, ready, running, waiting, halted, and
S0 on.
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Figure 3.3 Process control block (PCB).

® Program counter. The counter indicates the address of the next instruction
to be executed for this process.

® CPU registers. The registers vary in number and type, depending on
the computer architecture. They include accumulators, index registers,
stack pointers, and general-purpose registers, plus any condition-code
information. Along with the program counter, this state information must
be saved when an interrupt occurs, to allow the process to be continued
correctly afterward (Figure 3.4).

® CPU-scheduling information. This information includes a process priority,
pointers to scheduling queues, and any other scheduling parameters.
(Chapter 5 describes process scheduling.)

© Memory-management information. This information may include such
information as the value of the base and limit registers, the page tables,
or the segment tables, depending on the memory system used by the
operating system (Chapter 8).

e Accounting information. This information includes the amount of CPU
and real time used, time limits, account numbers, job or process numbers,
and so on.

® J/O status information. This information includes the list of /0 devices
allocated to the process, a list of open files, and so on.

In brief, the PCB simply serves as the repository for any information that may
vary from process to process.

3.1.4 Threads

The process model discussed so far has implied that a process is a program
that performs a single thread of execution. For example, when a process is
running a word-processor program, a single thread of instructions is being
executed. This single thread of control allows the process to perform only one
task at one time. The user cannot simultaneously type in characters and run the
spell checker within the same process, for example. Many modern operating
systems have extended the process concept to allow a process to have multiple
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Figure 3.7 Queueing-diagram representation of process scheduling.

from these queues in some fashion. The selection process is carried out by the
appropriate scheduler.

Often, inabatch system, more processes are submitted than can be executed
immediately. These processes are spooled to a mass-storage device (typically a
disk), where they are kept for later execution. The long-term scheduler, or job
scheduler, selects processes from this pool and loads them into memory for
execution. The short-term scheduler, or CPU scheduler, selects from among
the processes that are ready to execute and allocates the CPU to one of them.

The primary distinction between these two schedulers lies in frequency
of execution. The short-term scheduler must select a new process for the CPU
frequently. A process may execute for only a few milliseconds before waiting
for an 1/0 request. Often, the short-term scheduler executes at least once every
100 milliseconds. Because of the short time between executions, the short-term
scheduler must be fast. If it takes 10 milliseconds to decide to execute a process
for 100 milliseconds, then 10/(100 + 10) = 9 percent of the CPU is being used
(wasted) simply for scheduling the work.

The long-term scheduler executes much less frequently; minutes may sep-
arate the creation of one new process and the next. The long-term scheduler
controls the degree of multiprogramming (the number of processes in mem-
ory). If the degree of multiprogramming is stable, then the average rate of
process creation must be equal to the average departure rate of processes
leaving the system. Thus, the long-term scheduler may need to be invoked
only when a process leaves the system. Because of the longer interval between
executions, the long-term scheduler can afford to take more time to decide
which process should be selected for execution.

It is important that the long-term scheduler make a careful selection. In
general, most processes can be described as either 1/0 bound or CPUbound. An
1/0-bound process is one that spends more of its time doing I/0 than it spends
doing computations. A CPU-bound process, in contrast, generates /O requests
infrequently, using more of its time doing computations. [t is important that the
long-term scheduler select a good process mix of 1/0-bound and CPU-bound
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Switching the CPU to another process requires performing a state save
of the current process and a state restore of a different process. This task is
known as a context switch. When a context switch occurs, the kernel saves the
context of the old process in its PCB and loads the saved context of the new
process scheduled to run. Context-switch time is pure overhead, because the
system does no useful work while switching. Its speed varies from machine to
machine, depending on the memory speed, the number of registers that must
be copied, and the existence of special instructions (such as a single instruction
to load or store all registers). Typical speeds are a few milliseconds.

Context-switch times are highly dependent on hardware support. For
instance, some processors (such as the Sun UltraSPARC) provide multiple sets
of registers. A context switch here simply requires changing the pointer to the
current register set. Of course, if there are more active processes than there are
register sets, the system resorts to copying register data to and from memory,
as before. Also, the more complex the operating system, the more work must
be done during a context switch. As we will see in Chapter 8, advanced
memory-management techniques may require extra data to be switched with
each context. For instance, the address space of the current process must be
preserved as the space of the next task is prepared for use. How the address
space is preserved, and what amount of work is needed to preserve it, depend
on the memory-management method of the operating system.

Operations on Processes

The processes in most systems can execute concurrently, and they may
be created and deleted dynamically. Thus, these systems must provide a
mechanism for process creation and termination. In this section, we explore
the mechanisms involved in creating processes and illustrate process creation
on UNIX and Windows systems.

3.3.1 Process Creation

A process may create several new processes, via a create-process system call,
during the course of execution. The creating process is called a parent process,
and the new processes are called the children of that process. Each of these
new processes may in turn create other processes, forming a tree of processes.

Most operating systems (including UNIX and the Windows family of
operating systems) identify processes according to a unique process identifier
(or pid), which is typically an integer number. Figure 3.9 illustrates a typical
process tree for the Solaris operating system, showing the name of each process
and its pid. In Solaris, the process at the top of the tree is the sched process,
with pid of 0. The sched process creates several children processes~—including

pageout and fsflush. These processes are responsible for managing memory

and file systems. The sched process also creates the init process, which serves
as the root parent process for all user processes. In Figure 3.9, we see two
children of init—inetd and dtlogin. inetd is responsible for networking
services such as telnet and ftp; dtlogin is the process representing a user
login screen. When a user logs in, dtlogin creates an X-windows session
(Xsession), which in turns creates the sdt_shel process. Below sdt_shel, a
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user’s command-line shell —the C-shell or csh—is created. It is this command-
line interface where the user then invokes various child processes, such as the
1s and cat commands. We also see a csh process with pid of 7778 representing
a user who has logged onto the system using telnet. This user has started the
Netscape browser (pid of 7785) and the emacs editor (pid of 8105).

On UNIX, a listing of processes can be obtained using the ps command. For
example, entering the command ps -el will list complete information for all
processes currently active in the system. It is easy to construct a process tree
similar to what is shown in Figure 3.9 by recursively tracing parent processes
all the way to the init process.

In general, a process will need certain resources (CPU time, memory, files,
1/0 devices) to accomplish its task. When a process creates a subprocess, that
subprocess may be able to obtain its resources directly from the operating
system, or it may be constrained to a subset of the resources of the parent
process. The parent may have to partition its resources among its children,
or it may be able to share some resources (such as memory or files) among
several of its children. Restricting a child process to a subset of the parent’s
resources prevents any process from overloading the system by creating too
many subprocesses.

In addition to the various physical and logical resources that a process
obtains when it is created, initialization data (input) may be passed along by
the parent process to the child process. For example, consider a process whose
function is to display the contents of a file—say, img.jpg—on the screen of a
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Figure 3.9 A tree of processes on a typical Solaris system.
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terminal. When it is created, it will get, as an input from its parent precess,
the name of the file img.jpg, and it will use that file name, open the file, and
write the contents out. It may also get the name of the output device. Some
operating systems pass resources to child processes. On such a system, the
new process may get two open files, img.jpg and the terminal device, and may
simply transfer the datum between the two.

When a process creates a new process, two possibilities exist in terms of
execution:

1. The parent continues to execute concurrently with its children.

2. The parent waits until some or all of its children have terminated.
There are also two possibilities in terms of the address space of the new process:

1. The child process is a duplicate of the parent process (it has the same
program and data as the parent).

2. The child process has a new program loaded into it.

To illustrate these differences, let’s first consider the UNIX operating system.
In UNIX, as we've seen, each process is identified by its process identifier,

#tinclude <sys/types.h>
f#include <stdio.h=
#include <unistd.h>

int main()

{

pid-t pid;

/* fork a child process */
pid = fork();

if (pid < 0) {/* error occurred */
fprintf (stderr, "Fork Failed");

exit (-1);

}

else if (pid == 0) {/* child process */
execlp ("/bin/ls","1ls",NULL) ;

}

else {/* parent process */
/* parent will wait for the child to complete */

walt (NULL) ;
printf ("Child Complete");
exit (0);

Figure 3.10 C program forking a separate process.
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#include <stdio.h> B
#include <windows.h>

int main(vOiD)
STARTUPINFO s1i;
PROCESS_INFORMATION pi;

// allocate memory
ZeroMemory (&si, sizeof (si));
gi.cbhb = sizecf(si);
ZeroMemory (&pi, sizeof (pil));

// create child process

if (!CreateProcess (NULL, // use command line
"C:\\WINDOWS\\system32\\mspaint.exe", // command line
NULL, // don’t inherit process handle
NULL, // don’t inherit thread handle
FALSE, // disable handle inheritance
0, // no creation flags
NULL, // use parent’s environment block
NULL, // use parent’s existing directory
&si,
&pi))

fprintf (stderr, "Create Process Failed");
return -1;
}
// parent will wait for the child to complete
WaitForSingleObject (pi.hProcess, INFINITE) ;
printf ("Child Complete") ;

// close handles
ClosgseHandle (pi.hProcess) ;
CloseHandle (pi.hThread) ;

Figure 3.12 Creating a separate process using the Win32 API.

Two parameters passed to CreateProcess() are instances of the START-
UPINFO and PROCESS_INFORMATION structures. STARTUPINFO specifies many
properties of the new process, such as window size and appearance and han-
dles to standard input and output files. The PROCESS.INFORMATION structure
contains a handle and the identifiers to the newly created process and its thread.
We invoke the ZeroMemory () function to allocate memory for each of these
structures before proceeding with CreateProcess().

The first two parameters passed to CreateProcess() are the application
name and command line parameters. If the application name is NULL (which
in this case it is), the command line parameter specifies the application to
load. In this instance we are loading the Microsoft Windows mspaint.cxe
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application. Beyond these two initial parameters, we use the default parameters
for inheriting process and thread handles as well as specifying no creation flags.
We also use the parent’s existing environment block and starting directory.
Last, we provide two pointers to the STARTUPINFO and PROCESS_INFORMATION
structures created at the beginning of the program. In Figure 3.10, the parent
process waits for the child to complete by invoking the wait () system call.
The equivalent of this in Win32 is WaitForSingleObject (), whichis passed a
handle of the child process—pi.hProcess— thatit is waiting for to complete.
Once the child process exits, control returns from the WaitForSingleObject ()
function in the parent process.

3.3.2 Process Termination

A process terminates when it finishes executing its final staternent and asks the
operating system to delete it by using the exit () system call. At that point, the
process may return a status value (typically an integer) to its parent process (via
the wait() system call). All the resources of the process—including physical and
virtual memory, open files, and 1/0 buffers—are deallocated by the operating
system.

Termination can occur in other circumstances as well. A process can cause
the termination of another process via an appropriate system call (for example,
TerminateProcess() in Win32). Usually, such a system call can be invoked
only by the parent of the process that is to be terminated. Otherwise, users
could arbitrarily kill each other’s jobs. Note that a parent needs to know the
identities of its children. Thus, when one process creates a new process, the
identity of the newly created process is passed to the parent.

A parent may terminate the execution of one of its children for a variety of
reasons, such as these:

e The child has exceeded its usage of some of the resources that it has been
allocated. (To determine whether this has occurred, the parent must have
a mechanism to inspect the state of its children.)

e The task assigned to the child is no longer required.

e The parent is exiting, and the operating system does not allow a child to
continue if its parent terminates.

Some systems, including VMS, do not allow a child to exist if its parent
has terminated. In such systems, if a process terminates (either normally or
abnormally), then all its children must also be terminated. This phenomenon,
referred to as cascading termination, is normally initiated by the operating
system.

To illustrate process execution and termination, consider that, in UNIX, we
can terminate a process by using the exit () system call; its parent process
may wait for the termination of a child process by using the wait () system
call. The wait () system call returns the process identifier of a terminated child
so that the parent can tell which of its possibly many children has terminated.
If the parent terminates, however, all its children have assigned as their new
parent the init process. Thus, the children still have a parent to collect their
status and execution statistics.



96

3.4

Chapter 3 Processes
Interprocess Communication »

Processes executing concurrently in the operating system may be either
independent processes or cooperating processes. A process is independent
if it cannot affect or be affected by the other processes executing in the system.
Any process that does not share data with any other process is independent. A
process is cooperating if it can affect or be affected by the other processes
executing in the system. Clearly, any process that shares data with other
processes is a cooperating process.

There are several reasons for providing an environment that allows process
cooperation:

¢ Information sharing. Since several users may be interested in the same
piece of information (for instance, a shared file), we must provide an
environment to allow concurrent access to such information.

e Computation speedup. If we want a particular task to run faster, we must
break it into subtasks, each of which will be executing in parallel with the
others. Notice that such a speedup can be achieved only if the computer
has multiple processing elements (such as CPUs or 1/0 channels).

¢ Modularity. We may want to construct the system in a modular fashion,
dividing the system functions into separate processes or threads, as we
discussed in Chapter 2.

¢ Convenience. Even an individual user may work on many tasks at the
same time. For instance, a user may be editing, printing, and compiling in
parallel.

Cooperating processes require an interprocess communication (IPC) mech-
anism that will allow them to exchange data and information. There are two
fundamental models of interprocess communication: (1) shared memory and
(2) message passing. In the shared-memory model, a region of memory that
is shared by cooperating processes is established. Processes can then exchange
information by reading and writing data to the shared region. In the message-
passing model, communication takes place by means of messages exchanged
between the cooperating processes. The two communications models are
contrasted in Figure 3.13.

Both of the models just discussed are common in operating systems, and
many systems implement both. Message passing is useful for exchanging
smaller amounts of data, because no conflicts need be avoided. Message
passing is also easier to implement than is shared memory for intercomputer
communication. Shared memory allows maximum speed and convenience of
communication, as it can be done at memory speeds when within a computer.
Shared memory is faster than message passing, as message-passing systems
are typically implemented using system calls and thus require the more time-
consurmning task of kernel intervention. In contrast, in shared-memory systems,
system calls are required only to establish shared-memory regions. Once shared
memory is established, all accesses are treated as routine memory accesses, and
no assistance from the kernel is required. In the remainder of this section, we
explore each of these IPC models in more detail.
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be synchronized, so that the consumer does not try to consume an itemn that
has not yet been produced.

Two types of buffers can be used. The unbounded buffer places no practical
limit on the size of the buffer. The consumer may have to wait for new items,
but the producer can always produce new items. The bounded buffer assumes
a fixed buffer size. In this case, the consumer must wait if the buffer is empty,
and the producer must wait if the buffer is full.

Let’s look more closely at how the bounded buffer can be used to enable
processes to share memory. The following variables reside in a region of
memory shared by the producer and consumer processes:

#define BUFFER.SIZE 10
typedef struct {
} item;

item buffer [BUFFER_SIZE] ;
int in = 0;
int out = 0;

The shared buffer is implemented as a circular array with two logical
pointers: in and out. The variable in points to the next free position in the
buffer; out points to the first full position in the buffer. The buffer is empty
when in == out; the buffer is full when ((in + 1) % BUFFER SIZE) == out.

The code for the producer and consumer processes is shown in Figures 3.14
and 3.15, respectively. The producer process has a local variable nextProduced
in which the new item to be produced is stored. The consumer process has a
local variable nextConsumed in which the item to be consumed is stored.

This scheme allows at most BUFFER_SIZE — 1 items in the buffer at the same
time. We leave it as an exercise for you to provide a solution where BUFFER_SIZE
items can be in the buffer at the same time. In Section 3.5.1, we illustrate the
POSIX API for shared memory.

One issue this illustration does not address concerns the situation in which
both the producer process and the consumer process attempt to access the
shared buffer concurrently. In Chapter 6, we discuss how synchronization
among cooperating processes can be implemented effectively in a shared-
memory environment.

item nextProduced;

while (true) ({
/* produce an item in nextProduced */
while (((in + 1) % BUFFER.SIZE) == out)
; /* do nothing */
buffer{in] = nextProduced;
in = (in + 1) % BUFFERSIZE;

Figure 3.14 The producer process.
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item nextConsumed; ?

while (true)
while (in == out)
; // do nothing

nextConsumed = buffer[out];
out = (out + 1) % BUFFER.SIZE;
/* consume the item in nextConsumed */

Figure 3.15 The consumer process.

3.4.2 Message-Passing Systems

In Section 3.4.1, we showed how cooperating processes can communicate in a
shared-memory environment. The scheme requires that these processes share a
region of memory and that the code for accessing and manipulating the shared
memory be written explicitly by the application programmer. Another way to
achieve the same effect is for the operating system to provide the means for
cooperating processes to communicate with each other via a message-passing
facility.

Message passing provides a mechanism to allow processes to communicate
and to synchronize their actions without sharing the same address space and
is particularly useful in a distributed environment, where the communicating
processes may reside on different computers connected by a network. For
example, a chat program used on the World Wide Web could be designed so
that chat participants communicate with one another by exchanging messages.

A message-passing facility provides at least two operations: send(message)
and receive(message). Messages sent by a process can be of either fixed
or variable size. If only fixed-sized messages can be sent, the system-level
implementation is straightforward. This restriction, however, makes the task
of programming more difficult. Conversely, variable-sized messages require
a more complex system-level implementation, but the programming task
becomes simpler. This is a common kind of tradeoff seen throughout operating
system design.

If processes P and Q want to communicate, they must send messages to and
receive messages from each other; a communication link must exist between
them. This link can be implemented in a variety of ways. We are concerned here
not with the link’s physical implementation (such as shared memory, hardware
bus, or network, which are covered in Chapter 16) but rather with its logical
implementation. Here are several methods for logically implementing a link
and the send () /receive () operations:

e Direct or indirect communication
e Synchronous or asynchronous communication

e Automatic or explicit buffering

We look at issues related to each of these features next.
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3.4.2.1 Naming ¢

Processes that want to communicate must have a way to refer to each other.
They can use either direct or indirect communication.

Under direct communication, each process that wants to communicate
must explicitly name the recipient or sender of the communication. In this
scheme, the send () and receive() primitives are defined as:

e send(P, message) —Send a message to process P.

e receive(Q, message) —Receive a message from process Q.
A communication link in this scheme has the following properties:

e A link is established automatically between every pair of processes that
want to communicate. The processes need to know only each other’s
identity to communicate.

e A link is associated with exactly two processes.

e Between each pair of processes, there exists exactly one link.

This scheme exhibits symmietry in addressing; that is, both the sender
process and the receiver process must name the other to communicate. A
variant of this scheme employs asymimetry in addressing. Here, only the sender
names the recipient; the recipient is not required to name the sender. In this
scheme, the send () and receive () primitives are defined as follows:

e send(P, message) —Send amessage to process P.

e receive(id, message) —Receive amessage from any process; the vari-
able id is set to the name of the process with which communication has
taken place.

The disadvantage in both of these schemes (symmetric and asymmetric)
is the limited modularity of the resulting process definitions. Changing the
identifier of a process may necessitate examining all other process definitions.
All references to the old identifier must be found, so that they can be modified
to the new identifier. In general, any such hard-coding techniques, where
identifiers must be explicitly stated, are less desirable than techniques involving
indirection, as described next.

With indirect communication, the messages are sent to and received from
mailboxes, or ports. A mailbox can be viewed abstractly as an object into which
messages can be placed by processes and from which messages can be removed.
Each mailbox has a unique identification. For example, POSIX message queues
use an integer value to identify a mailbox. In this scheme, a process can
communicate with some other process via a number of different mailboxes.

Two processes can communicate only if the processes have a shared mailbox, - -

however. The send () and receive () primitives are defined as follows:

e send(A, message) —Send amessage to mailbox A.

e receive(A, message)—Receive a message from mailbox A.

In this scheme, a communication link has the following properties:
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e A link is established between a pair of processes only if both members of
the pair have a shared mailbox.

¢ A link may be associated with more than two processes.

® Between each pair of communicating processes, there may be a number of
different links, with each link corresponding to one mailbox.

Now suppose that processes Py, P», and P; all share mailbox A. Process
P; sends a message to A, while both P, and P; execute a receive() from A
Which process will receive the message sent by P;? The answer depends on
which of the following methods we choose:

e Allow a link to be associated with two processes at most.
e Allow at most one process at a time to execute a receive () operation.

e Allow the system to select arbitrarily which process will receive the
message (that is, either P, or P;, but not both, will receive the message).
The system also may define an algorithm for selecting which process
will receive the message (that is, round robin where processes take turns
receiving messages). The system may identify the receiver to the sender.

A mailbox may be owned either by a process or by the operating system.
If the mailbox is owned by a process (that is, the mailbox is part of the address
space of the process), then we distinguish between the owner (who can only
receive messages through this mailbox) and the user (who can only send
messages to the mailbox). Since each mailbox has a unique owner, there can be
no confusion about who should receive a message sent to this mailbox. When a
process that owns a mailbox terminates, the mailbox disappears. Any process
that subsequently sends a message to this mailbox must be notified that the
mailbox no longer exists.

In contrast, a mailbox that is owned by the operating system has an
existence of its own. It is independent and is not attached to any particular
process. The operating system then must provide a mechanism that allows a
process to do the following:

e (reate a new mailbox.

¢ Send and receive messages through the mailbox.

e Delete a mailbox.

The process that creates a new mailbox is that mailbox’s owner by default.
Initially, the owner is the only process that can receive messages through this
mailbox. However, the ownership and receiving privilege may be passed to
other processes through appropriate system calls. Of course, this provision
could result in multiple receivers for each mailbox.

3.4.2.2 Synchronization

Communication between processes takes place through calls to send () and
receive() primitives. There are different design options for implementing
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each primitive. Message passing may be either blocking or nonblocKing—
also known as synchronous and asynchronous.

¢ Blocking send. The sending process is blocked until the message is
received by the receiving process or by the mailbox.

e Nonblocking send. The sending process sends the message and resumes
operation.

e Blocking receive. The receiver blocks until a message is available.

e Nonblocking receive. The receiver retrieves either a valid message or a
null.

Different combinations of send () and receive () are possible. When both
send() and receive() are blocking, we have a rendezvous between the
sender and the receiver. The solution to the producer-consumer problem
becomes trivial when we use blocking send() and receive() statements.
The producer merely invokes the blocking send () call and waits until the
message is delivered to either the receiver or the mailbox. Likewise, when the
consumer invokes receive (), it blocks until a message is available.

Note that the concepts of synchronous and asynchronous occur frequently
in operating-system 1/0 algorithms, as you will see throughout this text.

3.4.2.3 Buffering

Whether communication is direct or indirect, messages exchanged by commu-
nicating processes reside in a temporary queue. Basically, such queues can be
implemented in three ways:

e Zero capacity. The queue has a maximum length of zero; thus, the link
cannot have any messages waiting in it. In this case, the sender must block
until the recipient receives the message.

e Bounded capacity. The queue has finite length #; thus, at most n messages
can reside in it. If the queue is not full when a new message is sent, the
message is placed in the queue (either the message is copied or a pointer
to the message is kept), and the sender can continue execution without
waiting. The links capacity is finite , however. If the link is full, the sender
must block until space is available in the queue.

e Unbounded capacity. The queues length is potentially infinite; thus, any
number of messages can wait in it. The sender never blocks.

The zero-capacity case is sometimes referred to as a message system with no
buffering; the other cases are referred to as systems with automatic buffering.

Examples of IPC Systems

In this section, we explore three different IPC systems. We first cover the
POSIX API for shared memory and then discuss message passing in the Mach
operating system. We conclude with Windows XP, which interestingly uses
shared memory as a mechanism for providing certain types of message passing.
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3.5.1 An Example: POSIX Shared Memory :

Several IPC mechanisms are available for POSIX systems, including shared
memory and message passing. Here, we explore the POSIX API for shared
memory.

A process must first create a shared memory segment using the shmget ()
system call (shmget () is derived from SHared Memory GET). The following
example illustrates the use of shmget ():

segment_id = shmget (IPC_PRIVATE, size, SIRUSR | SIWUSR);

This first parameter specifies the key (or identifier) of the shared-memory
segment. If this is set to IPC_PRIVATE, a new shared-memory segment is created.
The second parameter specifies the size (in bytes) of the shared memory
segment. Finally, the third parameter identifies the mode, which indicates
how the shared-memory segment is to be used —that is, for reading, writing,
or both. By setting the mode to S.IRUSR | S.IWUSR, we are indicating that the
owner may read or write to the shared memory segment. A successful call to
shmget () returns an integer identifier for the shared-memory segment. Other
processes that want to use this region of shared memory must specify this
identifier.

Processes that wish to access a shared-memory segment must attach it to
their address space using the shmat () (SHared Memory ATtach)system call.
The call to shmat () expects three parameters as well. The first is the integer
identifier of the shared-memory segment being attached, and the second is
a pointer location in memory indicating where the shared memory will be
attached. If we pass a value of NULL, the operating system selects the location
on the user’s behalf. The third parameter identifies a flag that allows the shared-
memory region to be attached in read-only or read-write mode; by passing a
parameter of 0, we allow both reads and writes to the shared region.

The third parameter identifies a mode flag. If set, the mode flag allows the
shared-memory region to be attached in read-only mode; if set to 0, the flag
allows both reads and writes to the shared region. We attach a region of shared
memory using shmat () as follows:

shared memory = (char *) shmat(id, NULL, 0);

If successful, shmat () returns a pointer to the beginning location in memory
where the shared-memory region has been attached.

Once the region of shared memory is attached to a process’s address space,
the process can access the shared memory as a routine memory access using
the pointer returned from shmat (). In this example, shmat () returns a pointer
to a character string. Thus, we could write to the shared-memory region as
follows:

sprintf (shared memory, "Writing to shared memory");

Other processes sharing this segment would see the updates to the shared-
memory segment.

Typically, a process using an existing shared-memory segment first attaches
the shared-memory region to its address space and then accesses (and possibly
updates) the region of shared memory. When a process no longer requires
access to the shared-memory segment, it detaches the segment from its address



104

Chapter 3 Processes

#include <stdio.h> #
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the identifier for the shared memory segment */

int segment._id;=

/* a pointer to the shared memory segment */

char* shared.memoxry;

/* the size (in bytes) of the shared memory segment */
const int size = 4096;

/* allocate a shared memory segment */
segment _id = shmget (IPC_PRIVATE, size, S_IRUSR | S_IWUSR);

/* attach the shared memory segment */
sharedmemory = (char *) shmat (segment.id, NULL, 0);

/* write a message to the shared memory segment */
sprintf (shared.memory, "Hi there!");

/* now print out the string from shared memory */
printf ("*%s\n", shared memory) ;

/* now detach the shared memory segment */
shmdt (shared.memory) ;

/* now remove the shared memory segment */
shmetl (segment._id, IPC.RMID, NULL) ;

return 0;

Figure 3.16 C program illustrating POSIX shared-memory API.

space. To detach a region of shared memory, the process can pass the pointer
of the shared-memory region to the shmdt () system call, as follows:

shmdt (shared_memory) ;

Finally, a shared-memory segment can be removed from the system with the
shmctl () system call, which is passed the identifier of the shared segment
along with the flag IPC_RMID.

The program shown in Figure 3.16 illustrates the POSIX shared-memory API - -
discussed above. This program creates a 4,096-byte shared-memory segment.
Once the region of shared memory is attached, the process writes the message
Hi There! to shared memory. After outputting the contents of the updated
memory, it detaches and removes the shared-memory region. We provide
further exercises using the POSIX shared memory API in the programming
exercises at the end of this chapter.

- 4



3.5 Examples of IPC Systems 105

3.5.2 An Example: Mach ’

As an example of a message-based operating system, we next consider
the Mach operating system, developed at Carnegie Mellon University. We
introduced Mach in Chapter 2 as part of the Mac OS X operating system. The
Mach kernel supports the creation and destruction of multiple tasks, which are
similar to processes but have multiple threads of control. Most communication
in Mach—including most of the system calls and all intertask information—
is carried out by messages. Messages are sent to and received from mailboxes,
called ports in Mach.

Evensystem calls are madeby messages. When a task is created, two special
mailboxes—the Kernel mailbox and the Notify mailbox—are also created. The
Kernel mailbox is used by the kernel to communicate with the task. The kernel
sends notification of event occurrences to the Notify port. Only three system
calls are needed for message transfer. The msg_send() call sends a message
to a mailbox. A message is received via msg_receive (). Remote procedure
calls (RPCs) are executed via msg.rpc (), which sends a message and waits for
exactly one return message from the sender. In this way, the RPC models a
typical subroutine procedure call but can work between systems—hence the
term remote.

The port_allocate() system call creates a new mailbox and allocates
space for its queue of messages. The maximum size of the message queue
defaults to eight messages. The task that creates the mailbox is that mailbox’s
owner. The owner is also allowed to receive from the mailbox. Only one task
at a time can either own or receive from a mailbox, but these rights can be sent
to other tasks if desired.

The mailbox has an initially empty queue of messages. As messages are
sent to the mailbox, the messages are copied into the mailbox. All messages
have the same priority. Mach guarantees that multiple messages from the same
sender are queued in first-in, first-out (FIFO) order but does not guarantee an
absolute ordering. For instance, messages from two senders may be queued in
any order.

The messages themselves consist of a fixed-length header followed by a
variable-length data portion. The header indicates the length of the message
and includes two mailbox names. One mailbox name is the mailbox to which
the message is being sent. Commonly, the sending thread expects a reply; so
the mailbox name of the sender is passed on to the receiving task, which can
use it as a “return address.”

The variable part of a message is a list of typed data items. Each entry
in the list has a type, size, and value. The type of the objects specified in the
message is important, since objects defined by the operating system —such as
ownership or receive access rights, task states, and memory segments—may
be sent in messages.

The send and receive operations themselves are flexible. For instance, when
a message is sent to a mailbox, the mailbox may be full. If the mailbox is not
full, the message is copied to the mailbox, and the sending thread continues. It
the mailbox is full, the sending thread has four options:

1. Wait indefinitely until there is room in the mailbox.

2. Wait at most 17 milliseconds.
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3. Do not wait at all but rather return immediately. ?

4. Temporarily cache a message. One message can be given to the operating
system to keep, even though the mailbox to which it is being sent is full.
When the message can be put in the mailbox, a message is sent back to
the sender; only one such message to a full mailbox can be pending at
any time for a given sending thread.

The final option is meant for server tasks, such as a line-printer driver. After
finishing a request, such tasks may need to send a one-time reply to the task
that had requested service; but they must also continue with other service
requests, even if the reply mailbox for a client is full.

The receive operation must specify the mailbox or mailbox set from which a
message is to be received. A mailbox set is a collection of mailboxes, as declared
by the task, which can be grouped together and treated as one mailbox for the
purposes of the task. Threads in a task can receive only from a mailbox or
mailbox set for which the task has receive access. A port.status() system
call returns the number of messages in a given mailbox. The receive operation
attempts to receive from (1) any mailbox in a mailbox set or (2) a specific
(named) mailbox. If no message is waiting to be received, the receiving thread
can either wait at most n milliseconds or not wait at all.

The Mach system was especially designed for distributed systems, which
we discuss in Chapters 16 through 18, but Mach is also suitable for single-
processor systems, as evidenced by its inclusion in the Mac OS X system. The
major problem with message systems has generally been poor performance
caused by double copying of messages; the message is copied first from
the sender to the mailbox and then from the mailbox to the receiver. The
Mach message system attempts to avoid double-copy operations by using
virtual-memory-management techniques (Chapter 9). Essentially, Mach maps
the address space containing the sender’s message into the receiver’s address
space. The message itself is never actually copied. This message-management
technique provides a large performance boost but works for only intrasystem
messages. The Mach operating system is discussed in an extra chapter posted
on our website.

3.5.3 An Example: Windows XP

The Windows XP operating system is an example of modern design that
employs modularity to increase functionality and decrease the time needed
to implement new features. Windows XP provides support for multiple
operating environments, or subsystems, with which application programs
communicate via a message-passing mechanism. The application programs
can be considered clients of the Windows XP subsystem server.

The message-passing facility in Windows XP is called the local procedure-
call (LPC) facility. The LPC in Windows XP communicates between two
processes on the same machine. It is similar to the standard RPC mechanism that
is widely used, but it is optimized for and specific to Windows XP. Like Mach,
Windows XP uses a port object to establish and maintain a connection between
two processes. Every client that calls a subsystem needs a communication
channel, which is provided by a port object and is never inherited. Windows
XP uses two types of ports: connection ports and communication ports. They
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applications using the Win32 API invoke standard remote procedure.calls.
When the RPC is being invoked on a process on the same system, the RPC is
indirectly handled through a local procedure call. LPCs are also used in a few
other functions that are part of the Win32 APL

Communication in Client-Server Systems

In Section 3.4, we described how processes can communicate using shared
memory and message passing. These techniques can be used for communica-
tion in client—server systems (1.12.2) as well. In this section, we explore three
other strategies for communication in client—server systems: sockets, remote
procedure calls (RPCs), and Java’s remote method invocation (RMI).

3.6.1 Sockets

A socket is defined as an endpoint for communication. A pair of processes
communicating over a network employ a pair of sockets—one for each process.
A socket is identified by an IP address concatenated with a port number. In
general, sockets use a client—server architecture. The server waits for incoming
client requests by listening to a specified port. Once a request is received, the
server accepts a connection from the client socket to complete the connection.
Servers implementing specific services (such as telnet, ftp, and http) listen to
well-known ports (a telnet server listens to port 23, an ftp server listens to
port 21, and a web, or http, server listens to port 80). All ports below 1024 are
considered well known; we can use them to implement standard services.
When a client process initiates a request for a connection, it is assigned a
port by the host computer. This port is some arbitrary number greater than
1024. For example, if a client on host X with IP address 146.86.5.20 wishes to
establish a connection with a web server (which is listening on port 80) at
address 161.25.19.8, host X may be assigned port 1625. The connection will
consist of a pair of sockets: (146.86.5.20:1625) on host X and (161.25.19.8:80)
on the web server. This situation is illustrated in Figure 3.18. The packets

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80)

Figure 3.18 Communication using sockets.
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traveling between the hosts are delivered to the appropriate process based on
the destination port number.

All connections must be unique. Therefore, if another process also on host
X wished to establish another connection with the same web server, it would be
assigned a port number greater than 1024 and not equal to 1625. This ensures
that all connections consist of a unique pair of sockets.

Although most program examples in this text use C, we will illustrate
sockets using Java, as it provides a much easier interface to sockets and has a
rich library for networking utilities. Those interested in socket programming
in C or C++ should consult the bibliographical notes at the end of the chapter.

Java provides three different types of sockets. Connection-oriented (TCP)
sockets are implemented with the Socket class. Connectionless (UDP) sockets
use the DatagramSocket class. Finally, theMulticastSocket classisa subclass
of the DatagramSocket class. A multicast socket allows data to be sent to
multiple recipients.

Our example describes a date server that uses connection-oriented TCP
sockets. The operation allows clients to request the current date and time from

import java.net.*;
import java.io.*;

public class DateServer
{
public static void main(Stringl[] args) ({

try {
ServerSocket sock = new ServerSocket (6013) ;

// now listen for connections
while (true) |
Socket client = sock.accept();

PrintWriter pout = new
PrintWriter(client.getOutputStream(), true);

// write the Date to the socket
pout.println{new java.util.Date() .toString());

// close the socket and resume
// listening for connections
client.close () ;

J
}

catch (IOException ioe)
System.err.println(ioce) ;

J

Figure 3.19 Date server.
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the server. The server listens to port 6013, although the port could have any
arbitrary number greater than 1024. When a connection is received, the server
returns the date and time to the client.

The date server is shown in Figure 3.19. The server creates a ServerSocket
that specifies it will listen to port 6013. The server then begins listening to the
port with the accept () method. The server blocks on the accept () method
waiting for a client to request a connection. When a connection request is
received, accept () returns a socket that the server can use to communicate
with the client.

The details of how the server communicates with the socket are as follows.
The server first establishes a PrintWriter object thatit will use to communicate
with the client. A PrintWriter object allows the server to write to the socket
using the routine print () and println() methods for output. The server
process sends the date to the client, calling the method println(). Once it
has written the date to the socket, the server closes the socket to the client and
resumes listening for more requests.

A client communicates with the server by creating a socket and connecting
to the port on which the server is listening. We implement such a client in the
Java program shown in Figure 3.20. The client creates a Socket and requests

import java.net.*;
import java.io.*;

public class DateClient
public static void main(Stringl] args) {
try {
//make connection to server socket
Socket sock = new Socket("127.0.0.1",6013);

InputStream in = sock.getInputStream() ;
BufferedReader bin = new
Buf feredReader (new InputStreamReader (in)) ;

// read the date from the socket

String line;

while ( (line = bin.readLine()) != null)
System.out.println(line);

// close the socket connection
sock.close () ;

catch (IOException ioe) {
System.err . println(ioe) ;

}
}

Figure 3.20 Date client.
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a connection with the server at IP address 127.0.0.1 on port 6013. Once the
connection is made, the client can read from the socket using normal stream
1/0 statements. After it has received the date from the server, the client closes
the socket and exits. The IP address 127.0.0.1 is a special IP address known as the
loopback. When a computer refers to IP address 127.0.0.1, it is referring to itself.
This mechanism allows a client and server on the same host to communicate
using the TCP/IP protocol. The IP address 127.0.0.1 could be replaced with the
IP address of another host running the date server. In addition to an IP address,
an actual host name, such as wwrw.westminstercollege.edu, can be used as well.

Communication using sockets—although common and efficient—is con-
sidered a low-level form of communication between distributed processes.
One reason is that sockets allow only an unstructured stream of bytes to be
exchanged between the communicating threads. It is the responsibility of the
client or server application to impose a structure on the data. In the next two
subsections, we look at two higher-level methods of communication: remote
procedure calls (RPCs) and remote method invocation (RMI).

3.6.2 Remote Procedure Calls

One of the most common forms of remote service is the RPC paradigm, which
we discussed briefly in Section 3.5.2. The RPC was designed as a way to
abstract the procedure-call mechanism for use between systems with network
connections. It is similar in many respects to the IPC mechanism described in
Section 3.4, and it is usually built on top of such a system. Here, however,
because we are dealing with an environment in which the processes are
executing on separate systems, we must use a message-based communication
scheme to provide remote service. In contrast to the IPC facility, the messages
exchanged in RPC communication are well structured and are thus no longer
just packets of data. Each message is addressed to an RPC daemon listening to
a port on the remote system, and each contains an identifier of the function
to execute and the parameters to pass to that function. The function is then
executed as requested, and any output is sent back to the requester in a separate
message.

A portis simply anumberincluded at the start of a message packet. Whereas
a system normally has one network address, it can have many ports within
that address to differentiate the many network services it supports. If a remote
process needs a service, it addresses a message to the proper port. For instance,
if a system wished to allow other systems to be able to list its current users, it
would have a daemon supporting such an RPC attached to a port—say, port
3027. Any remote system could obtain the needed information (that is, the list
of current users) by sending an RPC message to port 3027 on the server; the
data would be received in a reply message.

The semantics of RPCs allow a client to invoke a procedure on a remote
host as it would invoke a procedure locally. The RPC system hides the details
that allow communication to take place by providing a stub on the client side.
Typically, a separate stub exists for each separate remote procedure. When the
client invokes a remote procedure, the RPC system calls the appropriate stub,
passing it the parameters provided to the remote procedure. This stub locates
the port on the server and marshals the parameters. Parameter marshalling
involves packaging the parameters into a form that can be transmitted over
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a network. The stub then transmits a message to the server using méssage
passing. A similar stub on the server side receives this message and invokes
the procedure on the server. If necessary, return values are passed back to the
client using the same technique.

One issue that must be dealt with concerns differences in data representa-
tion on the client and server machines. Consider the representation of 32-bit
integers. Some systems (known as big-eidian) use the high memory address to
store the most significant byte, while other systems (known as little-endian) store
the least significant byte at the high memory address. To resolve differences
like this, many RPC systems define a machine-independent representation of
data. One such representation is known as external data representation (XDR).
On the client side, parameter marshalling involves converting the machine-
dependent data into XDR before they are sent to the server. On the server
side, the XDR data are unmarshalled and converted to the machine-dependent
representation for the server.

Another important issue involves the semantics of a call. Whereas local
procedure calls fail only under extreme circumstances, RPCs can fail, or be
duplicated and executed more than once, as a result of common network
errors. One way to address this problem is for the operating system to ensure
that messages are acted on exactly once, rather than at most once. Most local
procedure calls have the “exactly once” functionality, but it is more difficult to
implement.

First, consider “at most once”. This semantic can be assured by attaching
a timestamp to each message. The server must keep a history of all the
timestamps of messages it has already processed or a history large enough
to ensure that repeated messages are detected. Incoming messages that have
a timestamp already in the history are ignored. The client can then send
a message one or more times and be assured that it only executes once.
(Generation of these timestamps is discussed in Section 18.1.)

For “exactly once,” we need to remove the risk that the server never receives
the request. To accomplish this, the server must implement the “at most once”
protocol described above but must also acknowledge to the client that the RPC
call was received and executed. These ACK messages are common throughout
networking. The client must resend each RPC call periodically until it receives
the ACK for that call.

Another important issue concerns the communication between a server
and a client. With standard procedure calls, some form of binding takes place
during link, load, or execution time (Chapter 8) so that a procedure call’s name
is replaced by the memory address of the procedure call. The RPC scheme
requires a similar binding of the client and the server port, but how does a client
know the port numbers on the server? Neither system has full information
about the other because they do not share memory.

Two approaches are common. First, the binding information may be
predetermined, in the form of fixed port addresses. At compile time, an RPC
call has a fixed port number associated with it. Once a program is compiled,
the server cannot change the port number of the requested service. Second,
binding can be done dynamically by a rendezvous mechanism. Typically, an
operating system provides a rendezvous (also called a matchmaker) daemon
on a fixed RPC port. A client then sends a message containing the name of
the RPC to the rendezvous daemon requesting the port address of the RPC it
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3.6.3 Remote Method Invocation 2

Remote method invocation (RMI) is a Java feature similar to RPCs. RMI allows
a thread to invoke a method on a remote object. Objects are considered remote
if they reside in a different Java virtual machine (JvM). Therefore, the remote
object may be in a different JVM on the same computer or on a remote host
connected by a network. This situation is illustrated in Figure 3.22.

RMI and RPCs differ in two fundamental ways. First, RPCs support pro-
cedural programming, whereby only remote procedures or functions can be
called. In contrast, RMI is object-based: It supports invocation of methods on
remote objects. Second, the parameters to remote procedures are ordinary data
structures in RPC; with RMI, it is possible to pass objects as parameters to remote
methods. By allowing a Java program to invoke methods on remote objects,
RMI makes it possible for users to develop Java applications that are distributed
across a network.

To make remote methods transparent to both the client and the server,
RMI implements the remote object using stubs and skeletons. A stub is a
proxy for the remote object; it resides with the client. When a client invokes a
remote method, the stub for the remote object is called. This client-side stub
is responsible for creating a parcel consisting of the name of the method to be
invoked on the server and the marshalled parameters for the method. The stub
then sends this parcel to the server, where the skeleton for the remote object
receives it. The skeleton is responsible for unmarshalling the parameters and
invoking the desired method on the server. The skeleton then marshals the
return value (or exception, if any) into a parcel and returns this parcel to the
client. The stub unmarshals the return value and passes it to the client.

Lets look more closely at how this process works. Assume that a client
wishes to invoke a method on a remote object server with a signature
someMethod (Object, Object) that returns a boolean value. The client
executes the statement

boolean val = server.someMethod(A, B);

The call to someMethod () with the parameters A and B invokes the stub for the
remote object. The stub marshals into a parcel the parameters A and B and the
name of the method that is to be invoked on the server, then sends this parcel to
the server. The skeleton on the server unmarshals the parameters and invokes
the method someMethod(). The actual implementation of someMethod()
resides on the server. Once the method is completed, the skeleton marshals
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Figure 3.22 Remote method invocation.
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Figure 3.23 Marshalling parameters.

the boolean value returned from someMethod () and sends this value back to
the client. The stub unmarshals this return value and passes it to the client. The
process is shown in Figure 3.23.

Fortunately, the level of abstraction that RMI provides makes the stubs and
skeletons transparent, allowing Java developers to write programs that invoke
distributed methods just as they would invoke local methods. It is crucial,
however, to understand a few rules about the behavior of parameter passing.

e [f the marshalled parameters are local (or nonremote) objects, they are
passed by copy using a technique known as object serialization. However,
if the parameters are also remote objects, they are passed by reference. In
our example, if A is a local object and B a remote object, A is serialized and
passed by copy, and B is passed by reference. This in turn allows the server
to invoke methods on B remotely.

e [f local objects are to be passed as parameters to remote objects, they must
implement the interface java.io.Serializable. Many objects in the core
Java APl implement Serializable, allowing them to be used with RMIL
Object serialization allows the state of an object to be written to a byte
stream.

Summary

A process is a program in execution. As a process executes, it changes state. The
state of a process is defined by that process’s current activity. Each process may
be in one of the following states: new, ready, running, waiting, or terminated.
Each process is represented in the operating system by its own process-control
block (PCB).

A process, when it is not executing, is placed in some waiting queue. There
are two major classes of queues in an operating system: I/O request queues
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and the ready queue. The ready queue contains all the processes that arefeady
to execute and are waiting for the CPU. Each process is represented by a PCB,
and the PCBs can be linked together to form a ready queue. Long-term (job)
scheduling is the selection of processes that will be allowed to contend for
the CPU. Normally, long-term scheduling is heavily influenced by resource-
allocation considerations, especially memory management. Short-term (CPU)
scheduling is the selection of one process from the ready queue.

Operating systems must provide a mechanism for parent processes to
create new child processes. The parent may wait for its children to terminate
before proceeding, or the parent and children may execute concurrently. There
are several reasons for allowing concurrent execution: information sharing,
computation speedup, modularity, and convenience.

The processes executing in the operating system may be either independent
processes or cooperating processes. Cooperating processes require an interpro-
cess communication mechanism to communicate with each other. Principally,
communication is achieved through two schemes: shared memory and mes-
sage passing. The shared-memory method requires communicating processes
to share some variables. The processes are expected to exchange information
through the use of these shared variables. In a shared-memory system, the
responsibility for providing communication rests with the application pro-
grammers; the operating system needs to provide only the shared memory.
The message-passing method allows the processes to exchange messages.
The responsibility for providing communication may rest with the operating
system itself. These two schemes are not mutually exclusive and can be used
simultaneously within a single operating system.

Communication in client—server systems may use (1) sockets, (2) remote
procedure calls (RPCs), or (3) Java’s remote method invocation (RMI). A socket
is defined as an endpoint for communication. A connection between a pair of
applications consists of a pair of sockets, one at each end of the communication
channel. RPCs are another form of distributed communication. An RPC occurs
when a process (or thread) calls a procedure on a remote application. RMI is
the Java version of RPCs. RMI allows a thread to invoke a method on a remote
objectjustas it would invoke a method on a local object. The primary distinction
between RPCs and RMI is that in RPCs data are passed to a remote procedure in
the form of an ordinary data structure, whereas RMI allows objects to be passed
in remote method calls.

Exercises

3.1 Describe the differences among short-term, medium-term, and long-
term scheduling,

3.2 Describe the actions taken by a kernel to context-switch between

processes.

3.3 Consider the RPC mechanism. Describe the undesirable consequences
that could arise from not enforcing either the “at most once” or “exactly
once” semantic. Describe possible uses for a mechanism that has neither
of these guarantees.
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#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int value = 5;

int main()

{
pid-t pid;
pid = fork();
if (pid == 0) {/* child process */

value += 15;

}

else if (pid > 0) {/* parent process */

walt (NULL) ;
printf ("PARENT: value = %d",value); /* LINE A */
exit (0) ;

Figure 3.24 C program.

Using the program shown in Figure 3.24, explain what will be output at
Line A.

What are the benefits and the disadvantages of each of the following?
Consider both the system level and the programmer level.
a. Synchronous and asynchronous communication

b. Automatic and explicit buffering
c. Send by copy and send by reference

d. Fixed-sized and variable-sized messages

The Fibonacci sequence is the series of numbers 0,1,1,2,3,5,8, ....
Formally, it can be expressed as:

fiby =0
fib-l =1
fibn = fib;zfl + fibnAZ

Write a C program using the fork () system call that that generates the
Fibonacci sequence in the child process. The number of the sequence
will be provided in the command line. For example, if 5 is provided, the
first five numbers in the Fibonacci sequence will be output by the child
process. Because the parent and child processes have their own copies
of the data, it will be necessary for the child to output the sequence.
Have the parent invoke the wait () call to wait for the child process to
complete before exiting the program. Perform necessary error checking
to ensure that a non-negative number is passed on the command line.
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3.7

3.8

3.9

3.10

Repeat the preceding exercise, this time using the CreateProcess () in
the Win32 APL In this instance, you will need to specify a separate
program to be invoked from CreateProcess(). It is this separate
program that will run as a child process outputting the Fibonacci
sequence. Perform necessary error checking to ensure that a non-
negative number is passed on the command line.

Modify the date server shown in Figure 3.19 so that it delivers random
fortunes rather than the current date. Allow the fortunes to contain
multiple lines. The date client shown in Figure 3.20 can be used to read
the multi-line fortunes returned by the fortune server.

An echo server is a server that echoes back whatever it receives from a
client. For example, if a client sends the server the string Hello there! the
server will respond with the exact data it received from the client-—that
is, Hello there!

Write an echo server using the Java networking API described in
Section 3.6.1. This server will wait for a client connection using the
accept () method. When a client connection is received, the server will
loop, performing the following steps:

® Read data from the socket into a buffer.

o Write the contents of the buffer back to the client.

The server will break out of the loop only when it has determined that
the client has closed the connection.

The date server shown in Figure 3.19 wuses the
java.io.BufferedReader «class. BufferedReader extends the
java.io.Reader class, which is used for reading character streams.
However, the echo server cannot guarantee that it will read
characters from clients; it may receive binary data as well. The
class java.io.InputStream deals with data at the byte level rather
than the character level. Thus, this echo server must use an object
that extends java.io.InputStream. The read() method in the
java.io.InputStream class returns —1 when the client has closed its
end of the socket connection.

In Exercise 3.6, the child process must output the Fibonacci sequence,
since the parent and child have their own copies of the data. Another
approach to designing this program is to establish a shared-memory
segment between the parent and child processes. This technique allows
the child to write the contents of the Fibonacci sequence to the shared-
memory segment and has the parent output the sequence when the child
completes. Because the memory is shared, any changes the child makes
to the shared memory will be reflected in the parent process as well.
This program will be structured using POSIX shared memory as
described in Section 3.5.1. The program first requires creating the
data structure for the shared-memory segment. This is most easily
accomplished using a struct. This data structure will contain two items:
(1) a fixed-sized array of size MAX_SEQUENCE that will hold the Fibonacci
values; and (2) the size of the sequence the child process is to generate
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—sequence._size where sequence_size < MAX_.SEQUENCE. Thesg items
can be represented in a struct as follows:

#define MAX SEQUENCE 10

typedef struct {
long fib_sequence [MAX _SEQUENCE] ;
int sequence size;

}shared_data;

The parent process will progress through the following steps:

a. Accept the parameter passed on the command line and perform
error checking to ensure that the parameter is < MAX_SEQUENCE.

b. Create a shared-memory segment of size shared data.
c. Attach the shared-memory segment to its address space.

d. Setthevalue of sequence_size to the parameter on the command
line.

e. Fork the child process and invoke the wait () system call to wait
for the child to finish.

f. Output the value of the Fibonacci sequence in the shared-memory
segment.

g. Detach and remove the shared-memory segment.

Because the child process is a copy of the parent, the shared-memory
region will be attached to the child’s address space as well. The child
process will then write the Fibonacci sequence to shared memory and
finally will detach the segment.

One issue of concern with cooperating processes involves synchro-
nization issues. In this exercise, the parent and child processes must be
synchronized so that the parent does not output the Fibonacci sequence
until the child finishes generating the sequence. These two processes
will be synchronized using the wait () system call; the parent process
will invoke wait (), which will cause it to be suspended until the child
process exits.

Most UNIX and Linux systems provide the ipcs command. This com-
mand lists the status of various POSIX interprocess communication
mechanisms, including shared-memory segments. Much of the informa-
tion for the command comes from the data structure struct shmid.ds,
which is available in the /usr/include/sys/shm.h file. Some of the
fields of this structure include:

e int shm_segsz—size of the shared-memory segment

* short shm.nattch—number of attaches to the shared-memory
segment

* struct ipc_perm shm_perm—permission structure of the
shared-memory segment
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The struct ipc_perm data structure (which is available in the file
/usr/include/sys/ipc.h) contains the fields:

* unsigned short uid—identifier of the user of the
shared-memory segment

* unsigned short mode—permission modes

* key_t key (on Linux systems, __key)—user-specified key identifier

The permission modes are set according to how the shared-memory
segment is established with the shmget () system call. Permissions are
identified according to the following;:

Read permission of world.

+ \Write permission of world. -

Permissions can be accessed by using the bitwise AND operator &. For
example, if the statementmode & 0400 evaluates to true, the permission
mode allows read permission by the owner of the shared-memory
segment.

Shared-memory segments can be identified according to a user-
specified key or according to the integer value returned from the
shmget () system call, which represents the integer identifier of the
shared-memory segment created. The shm_ds structure for a given
integer segment identifier can be obtained with the following shmct1 ()
system call:

/* identifier of the shared memory segmentx*/
int segment_id;
shm_ds shmbuffer;

shmctl(segment_id, IPC_STAT, &shmbuffer);

If successful, shmectl () returns 0; otherwise, it returns -1.

Write a C program that is passed an identifier for a shared-memory
segment. This program will invoke the shmct1() function to obtain its
shm_ds structure. It will then output the following values of the given
shared-memory segment:

* Segment ID
* Key
* Mode
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e Owner UID
* Sjze

¢ Number of attaches

Project—UNIX Shell and History Feature

This project consists of modifying a C program which serves as a shell interface
that accepts user commands and then executes each command in a separate
process. A shell interface provides the user a prompt after which the next
command is entered. The example below illustrates the prompt sh> and the
user’s next command: cat prog.c. This command displays the file prog.con
the terminal using the UNIX cat command.

sh> cat prog.c

One technique for implementing a shell interface is to have the parent
process first read what the user enters on the command line (i.e. cat prog.c),
and then create a separate child process that performs the command. Unless
otherwise specified, the parent process waits for the child to exit before
continuing. This is similar in functionality to what is illustrated in Figure
3.11. However, UNIX shells typically also allow the child process to run in the
background —or concurrently —as well by specifying the ampersand (&) at the
end of the command. By rewriting the above command as

sh> cat prog.c &

the parent and child processes now run concurrently.

The separate child process is created using the fork () system call and the
user’s command is executed by using one of the system calls in the exec()
family (as described in Section 3.3.1).

Simple Shell

A C program that provides the basic operations of a command line shell is
supplied in Figure 3.25. This program is composed of two functions: main()
and setup (). The setup() function reads in the user’s next command (which
can be up to 80 characters), and then parses it into separate tokens that are used
to fill the argument vector for the command to be executed. (If the command
is to be run in the background, it will end with '&’, and setup () will update
the parameter background so the main() function can act accordingly. This
program is terminated when the user enters <Control><D> and setup () then
invokes exit ().

The main() function presents the prompt COMMAND-> and then invokes
setup (), which waits for the user to enter a command. The contents of the
command entered by the user is loaded into the args array. For example, if
the user enters 1s -1 at the COMMAND-> prompt, args [0] becomes equal to
the string 1s and args[1] is set to the string to -1. (By “string”, we mean a
null-terminated, C-style string variable.)
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#include <stdio.h> 2
$include <unistd.n>

#define MAX_LINE 80

/** setup() reads in the next command line, separating it into
distinct tokens using whitespace as delimiters.

setup{) modifies the args parameter so that it holds pointers
to the null-terminated strings that are the tokens in the most
recent user command line as well as a NULL pointer, indicating
the end of the argument list, which comes after the string
pointers that have been assigned to args. */

void setup(char inputBuffer([], char *args[],int *background)

{

/** full source code available online */

int main(void)

{

char inputBuffer [MAX LINE]; /* buffer to hecld command entered */
int background; /* equals 1 if a command is followed by ‘& */
char *args [MAX L,INE/2 + 11; /* command line arguments */

while (1) {
background = 0;
printf (" COMMAND->") ;
/* setup() calls exit () when Control-D is entered */
setup (inputBuffer, args, &background);

/** the steps are:

(1) fork a child process using fork{)

(2) the child process will invoke execvp()

(3) if background == 1, the parent will wait,

otherwige it will invoke the setup() function again. */

Figure 3.25 Outline of simple shell.

This project is organized into two parts: (1) creating the child process and
executing the command in the child, and (2) modifying the shell to allow a
history feature.

Creating a Child Process
The first part of this project is to modify the main() function in Figure 3.25 so

that upon returning from setup (), a child process is forked and executes the
command specified by the user.
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As noted above, the setup () function loads the contents of the argstarray
with the command specified by the user. This args array will be passed to the
execvp () function, which has the following interface:

execvp(char *command, char *params[]);

where command represents the command to be performed and params stores the
parameters to this command. For this project, the execvp () function should be
invoked as execvp(args [0] ,args) ; be sure to check the value of background
to determine if the parent process is to wait for the child to exit or not.

Creating a History Feature

The next task is to modify the program in Figure 3.25 so that it provides a
liistory feature that allows the user access up to the 10 most recently entered
commands. These commands will be numbered starting at 1 and will continue
to grow larger even past 10, e.g. if the user has entered 35 commands, the 10
most recent commands should be numbered 26 to 35. This history feature will
be implementing using a few different techniques.

First, the user will be able to list these commands when he/she presses
<Control> <C>, which is the SIGINT signal. UNIX systems use signals to
notify a process that a particular event has occurred. Signals may be either
synchronous or asynchronous, depending upon the source and the reason for
the event being signaled. Once a signal has been generated by the occurrence
of a certain event (e.g., division by zero, illegal memory access, user entering
<Control> <C>, etc.), the signal is delivered to a process where it must be
handled. A process receiving a signal may handle it by one of the following
techniques:

® Ignoring the signal
e using the default signal handler, or

e providing a separate signal-handling function.

Signals may be handled by first setting certain fields in the C structure
struct sigaction and then passing this structure to the sigaction()
function. Signals are defined in the include file /usr/include/sys/signal.h.
For example, the signal SIGINT represents the signal for terminating a program
with the control sequence <Control> <C>. The default signal handler for
SIGINT is to terminate the program.

Alternatively, a program may choose to set up its own signal-handling
function by setting the sa_handler field in struct sigaction to the name of
the function which will handle the signal and then invoking the sigaction()
function, passing it (1) the signal we are setting up a handler for, and (2) a
pointer to struct sigaction.

In Figure 3.26 we show a C program that uses the function han-
dle_SIGINT() for handling the SIGINT signal. This function prints out the
message “Caught Control C” and then invokes the exit () function to ter-
minate the program. (We must use the write () function for performing output
rather than the more common printf () as the former is known as being
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#include <signal.h:> t
#include <unistd.h>
#include <stdio.h>

#tdefine BUFFER_SIZE 50
char buffer [BUFFERSIZE] ;

/* the signal handling function */
volid handle_SIGINT ()

{

write (STDOUT _FILENO, buffer, strlen(buffer));

exit(0) ;
}
int main(int argc, char *argv][])
{

/* set up the signal handler */
gstruct sigaction handler;
handler.sa handler = handle SIGINT;
sigaction (STGINT, &handler, NULL);

/* generate the output message */
strepy (buffer, "Caught Control C\n");

/* loop until we receive <Controls<Cs */
while (1)

L3

return 0;

Figure 3.26 Signal-handling program.

signal-safe, indicating it can be called from inside a signal-handling function;
such guarantees cannot be made of printf ().) This program will run in the
while (1) loop until the user enters the sequence <Control> <C>. When this
occurs, the signal-handling function handle_SIGINT () is invoked.

The signal-handling function should be declared above main() and
because control can be transferred to this function at any point, no parameters
may be passed to it this function. Therefore, any data that it must access in your
program must be declared globally, i.e. at the top of the source file before your
function declarations. Before returning from the signal-handling function, it
should reissue the command prompt.

If the user enters <Control><C>, the signal handler will output a list of the
most recent 10 commands. With this list, the user can run any of the previous
10 commands by entering r x where 'x’ is the first letter of that command. If
more than one command starts with 'x’, execute the most recent one. Also, the
user should be able to run the most recent command again by just entering 'r’.
You can assume that only one space will separate the ‘r” and the first letter and



Bibliographical Notes 125

that the letter will be followed by "\n’. Again, 'r’ alone will be immedjately
followed by the \n character if it is wished to execute the most recent command.

Any command that is executed in this fashion should be echoed on the
user’s screen and the command is also placed in the history buffer as the next
command. (r x does not go into the history list; the actual command that it
specifies, though, does.)

It the user attempts to use this history facility to run a command and the
command is detected to be erroneous, an error message should be given to the
user and the command not entered into the history list, and the execvp()
function should not be called. (It would be nice to know about improperly
formed commands that are handed off to execvp () that appear to look valid
and are not, and not include them in the history as well, but that is beyond the
capabilities of this simple shell program.) You should also modify setup() so
it returns an int signifying if has successfully created a valid args list or not,
and the main() should be updated accordingly.
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4.1

The process model introduced in Chapter 3 assumed that a process was an
executing program with a single thread of control. Most modern operating
systems now provide features enabling a process to contain multiple threads of
control. This chapter introduces many concepts associated with multithreaded
computer systems, including a discussion of the APIs for the Pthreads, Win32,
and Java thread libraries. We look at many issues related to multithreaded
programming and how it affects the design of operating systems. Finally, we
explore how the Windows XP and Linux operating systems support threads at
the kernel level.

CHAPTER OBJECTIVES

¢ To introduce the notion of a thread — a fundamental unit of CPU utilization
that forms the basis of multithreaded computer systems.

* To discuss the APIs for Phtreads, Win32, and Java thread libraries.

Overview

A thread is a basic unit of CPU utilization; it comprises a thread ID, a program
counter, a register set, and a stack. It shares with other threads belonging
to the same process its code section, data section, and other operating-system
resources, such as open files and signals. A traditional (or heavyweight) process
has a single thread of control. If a process has multiple threads of control, it
can perform more than one task at a time. Figure 4.1 illustrates the difference
between a traditional single-threaded process and a multithreaded process.

4.1.1 Motivation

Many software packages that run on modern desktop PCs are multithreaded.
An application typically is implemented as a separate process with several
threads of control. A web browser might have one thread display images or
text while another thread retrieves data from the network, for example. A
word processor may have a thread for displaying graphics, another thread
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of threads in the kernel specifically for interrupt handling; Linux uses a kernel
thread for managing the amount of free memory in the system.

4.1.2 Benefits

The benefits of multithreaded programming can be broken down into four
major categories:

1. Responsiveness. Multithreading an interactive application may allow a
program to continue running even if part of it is blocked or is performing
a lengthy operation, thereby increasing responsiveness to the user. For
instance, a multithreaded web browser could still allow user interaction
in one thread while an image was being loaded in another thread.

2. Resource sharing. By default, threads share the memory and the
resources of the process to which they belong. The benefit of sharing
code and data is that it allows an application to have several different
threads of activity within the same address space.

3. Economy. Allocating memory and resources for process creation is costly.
Because threads share resources of the process to which they belong, it
is more economical to create and context-switch threads. Empirically
gauging the difference in overhead can be difficult, but in general it is
much more time consuming to create and manage processes than threads.
In Solaris, for example, creating a process is about thirty times slower than
is creating a thread, and context switching is about five times slower.

4. Utilization of multiprocessor architectures. The benefits of multithread-
ing can be greatly increased in a multiprocessor architecture, where
threads may be running in parallel on different processors. A single-
threaded process can only run on one CPU, no matter how many are
available. Multithreading on a multi-CPU machine increases concurrency.

Multithreading Models

Our discussion so far has treated threads in a generic sense. However, support
for threads may be provided either at the user level, for user threads, or by the
kernel, for kernel threads. User threads are supported above the kernel and
are managed without kernel support, whereas kernel threads are supported
and managed directly by the operating system. Virtually all contemporary
operating systems—including Windows XP, Linux, Mac OS X, Solaris, and
Tru64 UNIX (formerly Digital UNIX)—support kernel threads.

Ultimately, there must exist a relationship between user threads and kernel
threads. In this section, we look at three common ways of establishing this
relationship. :

4.2.1 Many-to-One Model

The many-to-one model (Figure 4.2) maps many user-level threads to one
kernel thread. Thread management is done by the thread library in user
space, so it is efficient; but the entire process will block if a thread makes a
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° «— kernel thread

Figure 4.2 Many-to-one model.

blocking system call. Also, because only one thread can access the kernel at a
time, multiple threads are unable to run in parallel on multiprocessors. Green
threads—a thread library available for Solaris—uses this model, as does GNU
Portable Threads.

4.2.2 One-to-One Model

The one-to-one model (Figure 4.3) maps each user thread to a kernel thread. It
provides more concurrency than the many-to-one model by allowing another
thread to run when a thread makes a blocking system call; it also allows
multiple threads to run in parallel on multiprocessors. The only drawback to
this model is that creating a user thread requires creating the corresponding
kernel thread. Because the overhead of creating kernel threads can burden the
performance of an application, most implementations of this model restrict the
number of threads supported by the system. Linux, along with the family of
Windows operating systems—including Windows 95, 98, NT, 2000, and XP—
implement the one-to-one model.

4.2.3 Many-to-Many Model

The many-to-many model (Figure 4.4) multiplexes many user-level threads to
a smaller or equal number of kernel threads. The number of kernel threads
may be specific to either a particular application or a particular machine (an

«—— user thread

EEN
OO O O

Figure 4.3 One-to-one model.
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34— user thread

° ° ° «+«—— kernel thread

Figure 4.4 Many-to-many model.

application may be allocated more kernel threads on a multiprocessor than
on a uniprocessor). Whereas the many-to-one model allows the developer to
create as many user threads as she wishes, true concurrency is not gained
because the kernel can schedule only one thread at a time. The one-to-one
model allows for greater concurrency, but the developer has to be careful not
to create too many threads within an application (and in some instances may
be limited in the number of threads she can create). The many-to-many model
suffers from neither of these shortcomings: Developers can create as many user
threads as necessary, and the corresponding kernel threads can run in parallel
on a multiprocessor. Also, when a thread performs a blocking system call, the
kernel can schedule another thread for execution.

One popular variation on the many-to-many mode! still multiplexes many
user-level threads to a smaller or equal number of kernel threads but also allows
a user-level thread to be bound to a kernel thread. This variation, sometimes
referred to as the fwo-level model (Figure 4.5), is supported by operating systems
such as IRIX, HP-UX, and Tru64 UNIX. The Solaris operating system supported
the two-level model in versions older than Solaris 9. However, beginning with
Solaris 9, this system uses the one-to-one model.

Thread Libraries

A thread library provides the programmer an API for creating and managing
threads. There are two primary ways of implementing a thread library. The first
approach is to provide a library entirely in user space with no kernel support.
All code and data structures for the library exist in user space. This means that
invoking a function in the library results in a local function call in user space
and not a system call.

The second approach is to implement a kernel-level library supported
directly by the operating system. In this case, code and data structures for
the library exist in kernel space. Invoking a function in the API for the library
typically results in a system call to the kernel.

Three main thread libraries are in use today: (1) POSIX Pthreads, (2) Win32,
and (3) Java. Pthreads, the threads extension of the POSIX standard, may be
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#include <pthread.h> 2
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner (void *param); /* the thread */

int main{(int argc, char *argv[])

{
pthread.t tid; /* the thread identifier */
pthread.attr t attr; /* set of thread attributes */

if (arge = 2) {
fprintf (stderr, "usage: a.out <integer value>\n");
return -1;

)

if (atoi(argv[i]) < 0) {
fprintf (stderr, "%d must be >= 0\n",atoi (argv([1l]));
return -1;

}

/* get the default attributes */
pthread.attr_.init (&attr) ;

/* create the thread */
pthread.create(&tid, &attr, runner,argv([1l]) ;
/* wait for the thread to exit */

pthread join(tid,NULL) ;

printf ("sum = %d\n", sum) ;

}

/* The thread will begin control in this function */
void *runner(void *param)

int i, upper = atol (param);
sum = 0;
for (i = 1; 1 <= upper; i++)

sum += 1;

pthread.exit (0) ;

}

Figure 4.6 Multithreaded C program using the Pthreads API.

main(). After some initialization, main() creates a second thread that begins
control in the runner () function. Both threads share the global data sum.
Let’s look more closely at this program. All Pthreads programs must
include the pthread.h header file. The statement pthread t tid declares
the identifier for the thread we will create. Each thread has a set of attributes,
including stack size and scheduling information. The pthread.attr_t attr
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declaration represents the attributes for the thread. We set the attribufes in
the function call pthread_attr_init (&attr). Because we did not explicitly
set any attributes, we use the default attributes provided. (In Chapter 5, we
will discuss some of the scheduling attributes provided by the Pthreads APL.) A
separate thread is created with the pthread_create () function call. In addition
to passing the thread identifier and the attributes for the thread, we also pass
the name of the function where the new thread will begin execution—in this
case, the runner () function. Last, we pass the integer parameter that was
provided on the command line, argv[1].

At this point, the program has two threads: the initial (or parent) thread
in main() and the summation (or child) thread performing the summation
operation in the runner () function. After creating the summation thread,
the parent thread will wait for it to complete by calling the pthread_join()
function. The summation thread will complete when it calls the function
pthread_exit (). Once the summation thread has returned, the parent thread
will output the value of the shared data sum.

4.3.2 Win32 Threads

The technique for creating threads using the Win32 thread library is similar to
the Pthreads technique in several ways. We illustrate the Win32 thread APl in
the C program shown in Figure 4.7. Notice that we must include the windows . h
header file when using the Win32 APL

Just as in the Pthreads version shown in Figure 4.6, data shared by the
separate threads—in this case, Sum—are declared globally (the DWORD data
type is an unsigned 32-bit integer. We also define the Summation() function
that is to be performed in a separate thread. This function is passed a pointer to
a void, which Win32 defines as LPVOID. The thread performing this function
sets the global data Sum to the value of the summation from 0 to the parameter
passed to Summation().

Threads are created in the Win32 API using the CreateThread () function
and—just as in Pthreads—a set of attributes for the thread is passed to this
function. These attributes include security information, the size of the stack,
and a flag that can be set to indicate if the thread is to start in a suspended
state. In this program, we use the default values for these attributes (which do
not initially set the thread to a suspended state and instead make it eligible
to be run by the CPU scheduler). Once the summation thread is created, the
parent must wait for it to complete before outputting the value of Sum, as
the value is set by the summation thread. Recall that the Pthread program
(Figure 4.6) had the parent thread wait for the summation thread using the
pthread_join() statement. We perform the equivalent of this in the Win32 API
using the WaitForSingleObject () function, which causes the creating thread
to block until the summation thread has exited. (We will cover synchronization
objects in more detail in Chapter 6.)

4.3.3 Java Threads

Threads are the fundamental model of program execution in a Java program,
and the Java language and its API provide a rich set of features for the creation
and management of threads. All Java programs comprise at least a single thread
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#tinclude <windows.h> s
#include <stdio.h>

DWORD Sum; /* data is shared by the thread(s) */

/* the thread runs in this separate function */

DWORD WINAPI Summation (LPVOID Param)
DWORD Upper = * (DWORD*)Param;
for (DWORD i = 0; i <= Upper; i++)
Sum += 1i;
return 0;

}

int main(int argc, char *argv/(])
{
DWORD ThreadId;
HANDLE ThreadHandle;
int Param;
/* perform some basic error checking */
if (argc != 2) {
fprintf (stderr, "An integer parameter is required\n");
return -1;
}
Param = atoi(argv[l]);
if (Param < 0) {
fprintf (stderr, "An integer »= 0 is required\n");
return -1;

J

// create the thread
ThreadHandle = CreateThread (
NULL, // default security attributes
0, // default stack size
Summation, // thread function
&Param, // parameter to thread function
0, // default creation flags
&ThreadId):; // returns the thread identifier

if (ThreadHandle != NULL) {
// now wait for the thread to finish

WaitForSingleObject (ThreadHandle, INFINITE) ;

// close the thread handle
CloseHandle (ThreadHandle) ;

printf ("sum = %d\n", Sum) ;

}

Figure 4.7 Multithreaded C program using the Win32 API.
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of control—even a simple Java program consisting of only a main() méthod
runs as a single thread in the JVM.

There are two techniques for creating threads in a Java program. One
approach is to create a new class that is derived from the Thread class and
to override its run() method. An alternative—and more commonly used—
technique is to define a class that implements the Runnable interface. The
Runnable interface is defined as follows:

public interface Runnable

{
}

When a class implements Runnable, it must define a run () method. The code
implementing the run () method is what runs as a separate thread.

Figure 4.8 shows the Java version of a multithreaded program that
determines the summation of a non-negative integer. The Summation class
implements the Runnable interface. Thread creation is performed by creating
an object instance of the Thread class and passing the constructor a Runnable
object.

Creating a Thread object does not specifically create the new thread; rather,
it is the start() method that actually creates the new thread. Calling the
start () method for the new object does two things:

public abstract void run();

1. It allocates memory and initializes a new thread in the JVM.

2. It calls the run() method, making the thread eligible to be run by the
JVM. (Note that we never call the run() method directly. Rather, we call
the start () method, and it calls the run() method on our behalf.)

When the summation program runs, two threads are created by the JvM.
The first is the parent thread, which starts execution in the main() method.
The second thread is created when the start () method on the Thread object
is invoked. This child thread begins execution in the run() method of the
Summation class. After outputting the value of the summation, this thread
terminates when it exits from its run () method.

Sharing of data between threads occurs easily in Win32 and Pthreads, as
shared data are simply declared globally. As a pure object-oriented language,
Java has no such notion of global data; if two or more threads are to share
data in a Java program, the sharing occurs by passing reference to the shared
object to the appropriate threads. In the Java program shown in Figure 4.8, the
main thread and the summation thread share the the object instance of the Sum
class. This shared object is referenced through the appropriate getSum() and
setSum() methods. (You might wonder why we don’t use an Integer object
rather than designing a new sum class. The reason is that the Integer class is
immutable—that is, once its value is set, it cannot change.)

Recall that the parent threads in the Pthreads and Win32 libraries use
pthread.join() and WaitForSingleObject() (respectively) to wait for
the summation threads to finish before proceeding. The join() method
in Java provides similar functionality. (Notice that join() can throw an
InterruptedException, which we choose to ignore.)
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class Sum

{

5

private int sum;

public int getSum{) {
return sum;

}

public void setSum(int sum) {
this.sum = sum;

t
t

class Summation implements Runnable
private int upper;
private Sum sumValue;

public Summation(int upper, Sum sumValue) {
this.upper = upper;
this.sumvalue = sumValue;

}

public void run() {
int sum = 0;
for (int i = 0; 1 <= upper; i++)

sum += 1i;
sumValue.setSum(sum) ;

public class Driver
{ .
public static void main(Stringl[] args) {
if (args.length > 0) {
if (Integer.parselnt (args[0]) < 0)

System.err.println(args[0] + " must be >= 0.");
else {

// create the object to be shared

Sum sumObject = new Sum();

int upper = Integer.parselnt (argsl[0]);
Thread thrd = new Thread(new Summation (upper, sumObject));
thrd.start () ;
try {
thrd.join () ;
System.out.println
("The sum of "+upper+" is "+sumCbiject.getSum());
} cateh (InterruptedException ie) { }
}
'

else
System.err.println("Usage: Summation <integer values>"); }

Figure 4.8 Java program for the summation of a non-negative integer.
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The ]VM and Host Operatmg Systern .

'; ;The IVM is Wplcaﬂy implemented on top of a host sperati
3: :P'gure o 1’7‘) Thls setup aﬂows the VM to hide the

.For example, nnplementatmns of a JVM for the WmdéWs famﬂy of oﬁeratmg:
systems might use the Win32 API when creating ]ava threads, _Lmux andi -
Solaris systems might use the Pthreads APL o -

4.4 Threading Issues

In this section, we discuss some of the issues to consider with multithreaded
programs.

4.41 The fork() and exec() System Calls

In Chapter 3, we described how the fork() system call is used to create a
separate, duplicate process. The semantics of the fork() and exec() system
calls change in a multithreaded program.

If one thread in a program calls fork (), does the new process duplicate
all threads, or is the new process single-threaded? Some UNIX systems have
chosen to have two versions of fork(), one that duplicates all threads and
another that duplicates only the thread that invoked the fork () system call.

The exec() system call typically works in the same way as described
in Chapter 3. That is, if a thread invokes the exec () system call, the program
specified in the parameter to exec () will replace the entire process—including
all threads.

Which of the two versions of fork() to use depends on the apphca’aon
If exec() is called immediately after forking, then duplicating all threads is
unnecessary, as the program specified in the parameters to exec () will replace
the process. In this instance, duplicating only the calling thread is appropriate.
If, however, the separate process does not call exec () after forking, the separate
process should duplicate all threads.
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4.4.2 Cancellation B

Thread cancellation is the task of terminating a thread before it has completed.
For example, if multiple threads are concurrently searching through a database
and one thread returns the result, the remaining threads might be canceled.
Another situation might occur when a user presses a button on a web browser
that stops a web page from loading any further. Often, a web page is loaded
using several threads—each image is loaded in a separate thread. When a
user presses the stop button on the browser, all threads loading the page are
canceled.

A thread that is to be canceled is often referred to as the target thread.
Cancellation of a target thread may occur in two different scenarios:

1. Asynchronous cancellation. One thread immediately terminates the
target thread.

2. Deferred cancellation. The target thread periodically checks whether it
should terminate, allowing it an opportunity to terminate itself in an
orderly fashion.

The difficulty with cancellation occurs in situations where resources have
been allocated to a canceled thread or where a thread is canceled while in
the midst of updating data it is sharing with other threads. This becomes
especially troublesome with asynchronous cancellation. Often, the operating
system will reclaim system resources from a canceled thread but will not
reclaim all resources. Therefore, canceling a thread asynchronously may not
free a necessary system-wide resource.

With deferred cancellation, in contrast, one thread indicates that a target
thread is to be canceled, but cancellation occurs only after the target thread has
checked a flag to determine if it should be canceled or not. This allows a thread
to check whether it should be canceled at a point when it can be canceled safely.
Pthreads refers to such points as cancellation points.

4.4.3 Signal Handling

A signal is used in UNIX systems to notify a process that a particular event has
occurred. A signal may be received either synchronously or asynchronously,
depending on the source of and the reason for the event being signaled. All
signals, whether synchronous or asynchronous, follow the same pattern:

1. A signal is generated by the occurrence of a particular event.
2. A generated signal is delivered to a process.

3. Once delivered, the signal must be handled.

Examples of synchronous signals include illegal memory access and
division by 0. If a running program performs either of these actions, a signal
is generated. Synchronous signals are delivered to the same process that
performed the operation that caused the signal (that is the reason they are
considered synchronous).



140

Chapter4 Threads

When a signal is generated by an event external to a running process, that
process receives the signal asynchronously. Examples of such signals include
terminating a process with specific keystrokes (such as <control> <C=>) and
having a timer expire. Typically, an asynchronous signal is sent to another
process.

Every signal may be handled by one of two possible handlers:

1. A default signal handler
2. A user-defined signal handler

Every signal has a default signal handler that is run by the kernel when
handling that signal. This default action can be overridden by a user-defined
signal handler that is called to handle the signal. Signals may be handled in
different ways. Some signals (such as changing the size of a window) may
simply be ignored; others (such as an illegal memory access) may be handled
by terminating the program.

Handling signals in single-threaded programs is straightforward; signals
are always delivered to a process. However, delivering signals is more
complicated in multithreaded programs, where a process may have several
threads. Where, then, should a signal be delivered?

In general, the following options exist:

Deliver the signal to the thread to which the signal applies.
Deliver the signal to every thread in the process.

Deliver the signal to certain threads in the process.

Ll A .

Assign a specific thread to receive all signals for the process.

The method for delivering a signal depends on the type of signal generated.
For example, synchronous signals need to be delivered to the thread causing
the signal and not to other threads in the process. However, the situation with
asynchronous signals is not as clear. Some asynchronous signals—such as a
signal that terminates a process (<control><C>, for example)—should be
sent to all threads.

Most multithreaded versions of UNIX allow a thread to specify which
signals it will accept and which it will block. Therefore, in some cases, an asyn-
chronous signal may be delivered only to those threads that are not blocking
it. However, because signals need to be handled only once, a signal is typically
delivered only to the first thread found that is not blocking it. The standard
UNIX function for delivering a signal is kill(aid_t aid, int signal);here,
we specify the process (aid) to which a particular signal is to be delivered.
However, POSIX Pthreads also provides the pthread kill(pthread t tid,

int signal) function, which allows a signal to be delivered to a specified -

thread (tid.)

Although Windows does not explicitly provide support for signals, they
can be emulated using asynchronous procedure calls (APCs). The APC facility
allows a user thread to specify a function that is to be called when the user
thread receives notification of a particular event. As indicated by its name,
an APC is roughly equivalent to an asynchronous signal in UNIX. However,
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whereas UNIX must contend with how to deal with signals in a multithreaded
environment, the APC facility is more straightforward, as an APC is delivered
to a particular thread rather than a process.

4.4.4 Thread Pools

In Section 4.1, we mentioned multithreading in a web server. In this situation,
whenever the server receives a request, it creates a separate thread to service
the request. Whereas creating a separate thread is certainly superior to creating
a separate process, a multithreaded server nonetheless has potential problems.
The first concerns the amount of time required to create the thread prior to
servicing the request, together with the fact that this thread will be discarded
once it has completed its work. The second issue is more troublesome: If we
allow all concurrent requests to be serviced in a new thread, we have not placed
a bound on the number of threads concurrently active in the system. Unlimited
threads could exhaust system resources, such as CPU time or memory. One
solution to this issue is to use a thread pool.

The general idea behind a thread pool is to create a number of threads at
process startup and place them into a pool, where they sit and wait for work.
When a server receives a request, it awakens a thread from this pool —if one
is available—and passes it the request to service. Once the thread completes
its service, it returns to the pool and awaits more work. If the pool contains no
available thread, the server waits until one becomes free.

Thread pools offer these benefits:

1. Servicing a request with an existing thread is usually faster than waiting
to create a thread.

2. A thread pool limits the number of threads that exist at any one point.
This is particularly important on systems that cannot support a large
number of concurrent threads.

The number of threads in the pool can be set heuristically based on factors
such as the number of CPUs in the system, the amount of physical memory,
and the expected number of concurrent client requests. More sophisticated
thread-pool architectures can dynamically adjust the number of threads in the
pool according to usage patterns. Such architectures provide the further benefit
of having a smaller pool—thereby consuming less memory—when the load
on the system is low.

The Win32 API provides several functions related to thread pools. Using
the thread pool APl is similar to creating a thread with the Thread Create()
function, as described in Section 4.3.2. Here, a function that is to run as a
separate thread is defined. Such a function may appear as follows:

DWORD WINAPI PoolFunction(AVOID Param) {
/**
* this function runs as a separate thread.
**/

A pointer to PoolFunction() is passed to one of the functions in the thread
pool API, and a thread from the pool executes this function. One such member
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in the thread pool APl is the QueueUserWorkItem() function, which is passed
three parameters:

¢ LPTHREAD_START_ROUTINE Function—a pointer to the function that is to
run as a separate thread

e PVOID Param—the parameter passed to Function

e ULONG Flags—flags indicating how the thread pool is to create and
manage execution of the thread

An example of an invocation is:
QueueUserWorkItem(&PoolFunction, NULL, 0);

This causes a thread from the thread pool to invoke PoolFunction () on behalf
of the programmer. In this instance, we pass no parameters to PoolFunc-
tion(). Because we specify 0 as a flag, we provide the thread pool with no
special instructions for thread creation.

Other members in the Win32 thread pool AP1 include utilities that invoke
functions at periodic intervals or when an asynchronous I/0 request completes.
The java.util.concurrent package inJava 1.5 provides a thread pool utility
as well.

4.4.5 Thread-Specific Data

Threads belonging to a process share the data of the process. Indeed, this
sharing of data provides one of the benefits of multithreaded programming.
However, in some circumstances, each thread might need its own copy of
certain data. We will call such data thread-specific data. For example, in a
transaction-processing system, we might service each transaction in a separate
thread. Furthermore, each transaction may be assigned a unique identifier. To
associate each thread with its unique identifier, we could use thread-specific
data. Most thread libraries—including Win32 and Pthreads-—provide some
form of support for thread-specific data. Java provides support as well.

4.4.6 Scheduler Activations

A final issue to be considered with multithreaded programs concerns com-
munication between the kernel and the thread library, which may be required
by the many-to-many and two-level models discussed in Section 4.2.3. Such
coordination allows the number of kernel threads to be dynamically adjusted
to help ensure the best performance.

Many systems implementing either the many-to-many or two-level model
place an intermediate data structure between the user and kernel threads. This

data structure—typically known as a lightweight process, or LWP—is shownin- -

Figure 4.9. To the user-thread library, the LWP appears to be a virtual processor on
which the application can schedule a user thread to run. Each LWP is attached
to a kernel thread, and it is kernel threads that the operating system schedules
to run on physical processors. If a kernel thread blocks (such as while waiting
for an 1/0 operation to complete), the LWP blocks as well. Up the chain, the
user-level thread attached to the LWP also blocks.
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Figure 4.9 Lightweight process (LWP)

An application may require any number of LWPs to run efficiently. Consider
a CPU-bound application running on a single processor. In this scenario, only
one thread can run at once, so one LWP is sufficient. An application that is I/ O-
intensive may require multiple LWPs to execute, however. Typically, an LWP is
required for each concurrent blocking system call. Suppose, for example, that
five different file-read requests occur simultaneously. Five LWPs are needed,
because all could be waiting for I/O completion in the kernel. If a process has
only four LWPs, then the fifth request must wait for one of the LWPs to return
from the kernel.

One scheme for communication between the user-thread library and the
kernel is known as scheduler activation. It works as follows: The kernel
provides an application with a set of virtual processors (LwPs), and the
application can schedule user threads onto an available virtual processor.
Furthermore, the kernel must inform an application about certain events. This
procedure is known as an upcall. Upcalls are handled by the thread library
with an upcall handler, and upcall handlers must run on a virtual processor.
One event that triggers an upcall occurs when an application thread is about to
block. In this scenario, the kernel makes an upcall to the application informing
it that a thread is about to block and identifying the specific thread. The kernel
then allocates a new virtual processor to the application. The application runs
an upcall handler on this new virtual processor, which saves the state of the
blocking thread and relinquishes the virtual processor on which the blocking
thread is running. The upcall handler then schedules another thread that is
eligible to run on the new virtual processor. When the event that the blocking
thread was waiting for occurs, the kernel makes another upcall to the thread
library informing it that the previously blocked thread is now eligible to run.
The upcall handler for this event also requires a virtual processor, and the kernel
may allocate a new virtual processor or preempt one of the user threads and
run the upcall handler on its virtual processor. After marking the unblocked
thread as eligible to run, the application schedules an eligible thread to run on
an available virtual processor.

Operating-System Examples

In this section, we explore how threads are implemented in Windows XP and
Linux systems.
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4.5.1 Windows XP Threads

Windows XP implements the Win32 APL. The Win32 API is the primary API for
the family of Microsoft operating systems (Windows 95, 98, NT, 2000, and XP).
Indeed, much of what is mentioned in this section applies to this entire family
of operating systems.

A Windows XP application runs as a separate process, and each process
may contain one or more threads. The Win32 API for creating threads is
covered in Section 4.3.2. Windows XP uses the one-to-one mapping described
in Section 4.2.2, where each user-level thread maps to an associated kernel
thread. However, Windows XP also provides support for a fiber library, which
provides the functionality of the many-to-many model (Section 4.2.3). By using
the thread library, any thread belonging to a process can access the address
space of the process.

The general components of a thread include:

e A thread ID uniquely identifying the thread
e A register set representing the status of the processor

® A user stack, employed when the thread is running in user mode, and a
kernel stack, employed when the thread is running in kernel mode

e A private storage area used by various run-time libraries and dynamic link
libraries (DLLs)

The register set, stacks, and private storage area are known as the context
of the thread. The primary data structures of a thread include:

e ETHREAD—executive thread block
e KTHREAD—kernel thread block

e TEB—thread environment block

The key components of the ETHREAD include a pointer to the process
to which the thread belongs and the address of the routine in which the
thread starts control. The ETHREAD also contains a pointer to the corresponding
KTHREAD.

The KTHREAD includes scheduling and synchronization information for
the thread. In addition, the KTHREAD includes the kernel stack (used when the
thread is running in kernel mode) and a pointer to the TEB.

The ETHREAD and the KTHREAD exist entirely in kernel space; this means
that only the kernel can access them. The TEB is a user-space data structure that
is accessed when the thread is running in user mode. Among other fields, the
TEB contains the thread identifier, a user-mode stack, and an array for thread-
specific data (which Windows XP terms thread-local storage). The structure of
a Windows XP thread is illustrated in Figure 4.10.

4.5.2 Linux Threads

Linux provides the fork() system call with the traditional functionality of
duplicating a process, as described in Chapter 3. Linux also provides the ability
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sharing takes place, resulting in functionality similar to that provided by the
fork() system call.

The varying level of sharing is possible because of the way a task is
represented in the Linux kernel. A unique kernel data structure (specifically,
struct task_struct) exists for each task in the system. This data structure,
instead of storing data for the task, contains pointers to other data structures
where these data are stored —for example, data structures that represent the list
of open files, signal-handling information, and virtual memory. When fork ()
is invoked, a new task is created, along with a copy of all the associated data
structures of the parent process. A new task is also created when the clone ()
system call is made. However, rather than copying all data structures, the new
task points to the data structures of the parent task, depending on the set of
flags passed to clone ().

Summary

A thread is a flow of control within a process. A multithreaded process
contains several different flows of control within the same address space.
The benefits of multithreading include increased responsiveness to the user,
resource sharing within the process, economy, and the ability to take advantage
of multiprocessor architectures.

User-level threads are threads that are visible to the programmer and are
unknown to the kernel. The operating-system kernel supports and manages
kernel-level threads. In general, user-level threads are faster to create and
manage than are kernel threads, as no intervention from the kernel is required.
Three different types of models relate user and kernel threads: The many-to-one
model maps many user threads to a single kernel thread. The one-to-one model
maps each user thread to a corresponding kernel thread. The many-to-many
model multiplexes many user threads to a smaller or equal number of kernel
threads.

Most modern operating systems provide kernel support for threads; among
these are Windows 98, NT, 2000, and XP, as well as Solaris and Linux.

Thread libraries provide the application programmer with an API for
creating and managing threads. Three primary thread libraries are in common
use: POSIX Pthreads, Win32 threads for Windows systems, and Java threads.

Multithreaded programs introduce many challenges for the programmer,
including the semantics of the fork() and exec () system calls. Other issues
include thread cancellation, signal handling, and thread-specific data.

Exercises

4.1 Provide two programming examples in which multithreading does not
provide better performance than a single-threaded solution.

4.2 Describe the actions taken by a thread library to context switch between
user-level threads.
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Under what circumstances does a multithreaded solution using multi-
ple kernel threads provide better performance than a single-threaded
solution on a single-processor system?

Which of the following components of program state are shared across
threads in a multithreaded process?

a. Register values
b. Heap memory
Global variables

d. Stack memory

0o

Can a multithreaded solution using multiple user-level threads achieve
better performance on a multiprocessor system than on a single-
processor system?

As described in Section 4.5.2, Linux does not distinguish between
processes and threads. Instead, Linux treats both in the same way,
allowing a task to be more akin to a process or a thread depending
on the set of flags passed to the clone () system call. However, many
operating systems—such as Windows XP and Solaris—treat processes
and threads differently. Typically, such systems use a notation wherein
the data structure for a process contains pointers to the separate threads
belonging to the process. Contrast these two approaches for modeling
processes and threads within the kernel.

The program shown in Figure 4.11 uses the Pthreads API. What would
be output from the program at LINE C and LINE P?

Consider a multiprocessor system and a multithreaded program written
using the many-to-many threading model. Let the number of user-level
threads in the program be more than the number of processors in the
system. Discuss the performance implications of the following scenarios.

a. The number of kernel threads allocated to the program is less than
the number of processors.

b. The number of kernel threads allocated to the program is equal
to the number of processors.

c. The number of kernel threads allocated to the program is greater
than the number of processors but less than the number of
user-level threads.

Write a multithreaded Java, Pthreads, or Win32 program that outputs
prime numbers. This program should work as follows: The user will
run the program and will enter a number on the command line. The
program will then create a separate thread that outputs all the prime
numbers less than or equal to the number entered by the user.

Modify the socket-based date server (Figure 3.19) in Chapter 3 so that
the server services each client request in a separate thread.
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4.11

#include <pthread.h> s
#include «<stdio.h>

int value = 0;
void *runner(void *param); /* the thread */

int main(int argc, char *argv|[])
{

int pid;

pthread.t tid;

pthread attr t attr;

pid = fork();

if (pid == 0) {/* child process */
pthread attr_init (&attr);
pthread.create(&tid, &attr, runner, NULL) ;
pthread_join(tid, NULL) ;
printf ("CHILD: value = %d",value); /* LINE C */
}
else if (pid > 0) {/* parent process */
walt (NULL) ;
printf ("PARENT: value = %4",value); /* LINE P */
}
}

void *runner (void *param) {
value = 5;
pthread exit (0) ;

}

Figure 4.11 C program for question 4.7.

The Fibonacci sequence is the series of numbers 0,1,1.2,3,5, 8,

Formally, it can be expressed as:

Fiby=0
Fiby =1
fibn = fl'b”,] + fiban

Write a multithreaded program that generates the Fibonacci series using
either the Java, Pthreads, or Win32 thread library. This program should

work as follows: The user will enter on the command line the number

of Fibonacci numbers that the program is to generate. The program will
then create a separate thread that will generate the Fibonacci numbers,
placing the sequence in data that is shared by the threads (an array is
probably the most convenient data structure). When the thread finishes
execution, the parent thread will output the sequence generated by
the child thread. Because the parent thread cannot begin outputting
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the Fibonacci sequence until the child thread finishes, this will yequire
having the parent thread wait for the child thread to finish, using the
techniques described in Section 4.3.

4.12 Exercise 3.9 in Chapter 3 specifies designing an echo server using the
Java threading APL. However, this server is single-threaded, meaning the
server cannot respond to concurrent echo clients until the current client
exits. Modify the solution to Exercise 3.9 so that the echo server services
each client in a separate request.

Project—Matrix Multiplication

Given two matrices Aand B, where A is a matrix with M rows and K columns
and matrix B contains K rows and N columns, the matrix product of Aand B
is matrix C, where C contains M rows and N columns. The entry in matrix C
for row i column j (C; ;) is the sum of the products of the elements for row 7 in
matrix A and column ;j in matrix B. That is,

K
Cz] = Z Ai.n X Bn.j
n=1

For example, if A were a 3-by-2 matrix and B were a 2-by-3 matrix, element
Cs.1 would be the sum of A3y x By and A3 x Baj.

For this project, calculate each element C; ; in a separate worker thread. This
will involve creating M x N worker threads. The main-—or parent-—thread
will initialize the matrices A and B and allocate sufficient memory for matrix
C, which will hold the product of matrices A and B. These matrices will be
declared as global data so that each worker thread has access to A, B, and C.

Matrices A and B can be initialized statically, as shown below:

#define M 3
#define K 2
#define N 3

int A [M]I[X]
int B [K] [N]
int C [M] [N];

{ {1,4}, {2,5}, {3,6} };
{ {8,7,6}, {5,4,3} };

1l

Alternatively, they can be populated by reading in values from a file.
Passing Parameters to Each Thread

The parent thread will create M x N worker threads, passing each worker the
values of row i and column j that it is to use in calculating the matrix product.
This requires passing two parameters to each thread. The easiest approach with
Pthreads and Win32 is to create a data structure using a struct. The members
of this structure are i and j, and the structure appears as follows:
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/* structure for passing data to threads */ 3
struct v

int i; /* row */

int 3; /* column */

bi

Both the Pthreads and Win32 programs will create the worker threads
using a strategy similar to that shown below:

/* We have toc create M * N worker threads */
for (i = 0; 1 « M, i++)
for (i = 0; 3 < N; j++ ) {
struct v *data = (struct v *) malloc(sizeof(struct v});
data->1i = 1i;
data->j = J;
/* Now create the thread passing it data as a parameter */

The data pointer will be passed to either the pthread_create () (Pthreads)
function or the CreateThread () (Win32) function, which in turn will pass it
as a parameter to the function that is to run as a separate thread.

Sharing of data between Java threads is different from sharing between
threads in Pthreads or Win32. One approach is for the main thread to create
and initialize the matrices A, B, and C. This main thread will then create the
worker threads, passing the three matrices—along with row i and column j —
to the constructor for each worker. Thus, the outline of a worker thread appears
as follows:

public class WorkerThread implements Runnable
{

private int row;

private int col;

private int[] ] A;

private int (] [] B;

private int[] [] C;

public WorkerThread (int row, int col, int[] ] A,
int (101 B, int[l1 [l ©) {
this.row = row;

this.col = col;

this.A = A;
this.B = B;
this.C = C;

}

public void run() {

/* calculate the matrix product in Clrow] [coll */
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#define NUM_THREADS 10

/* an array of threads to be joined upon */
pthread.t workers [NUM.THREADS] ;

for (int 1 = 0; 1 < NUM_THREADS; i++)
pthread_join (workers[i], NULL) ;

Figure 4.12 Phtread code for joining ten threads.

Waiting for Threads to Complete

Once all worker threads have completed, the main thread will output the
product contained in matrix C. This requires the main thread to wait for
all worker threads to finish before it can output the value of the matrix
product. Several different strategies can be used to enable a thread to wait
for other threads to finish. Section 4.3 describes how to wait for a child
thread to complete using the Win32, Pthreads, and Java thread libraries.
Win32 provides the WaitForSingleObject() function, whereas Pthreads
and Java use pthread_join() and join(), respectively. However, in these
programming examples, the parent thread waits for a single child thread to
finish; completing this exercise will require waiting for multiple threads.

In Section 4.3.2, we describe the WaitForSingleObject () function, which
is used to wait for a single thread to finish. However, the Win32 API also
provides the WaitForMultipleObjects() function, which is used when
waiting for multiple threads to complete. WaitForMultipleObjects() is
passed four parameters:

1. The number of objects to wait for
2. A pointer to the array of objects
3. A flagindicating if all objects have been signaled

4. A timeout duration (or INFINITE)

For example, if THandles is an array of thread HANDLE objects of size N, the
parent thread can wait for all its child threads to complete with the statement:

WaitForMultipleObjects(N, THandles, TRUE, INFINITE);

A simple strategy for waiting on several threads using the Pthreads
pthread_join() or Java’s join() is to enclose the join operation within a
simple for loop. For example, you could join on ten threads using the Pthread
code depicted in Figure 4.12. The equivalent code using Java threads is shown
in Figure 4.13.

Bibliographical Notes
Thread performance issues were discussed by Anderson et al. [1989], who

continued their work in Anderson et al. [1991] by evaluating the performance
of user-level threads with kernel support. Bershad et al. [1990] describe
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final static int NUM_THREADS = 10; 3

/* an array of threads to be joined upon */
Thread[] workers = new Thread [NUM_THREADS] ;

for (int i = 0; i < NUM_THREADS; i++) ({
try {
workers[i] .join () ;
}catch (InterruptedException ie) {}

Figure 4.13 Java code for joining ten threads.
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Govindan and Anderson [1991], Draves et al. [1991], and Black [1990]. Zabatta
and Young [1998] compare Windows NT and Solaris threads on a symmetric
multiprocessor. Pinilla and Gill [2003] compare Java thread performance on
Linux, Windows, and Solaris.

Vahalia [1996] covers threading in several versions of UNIX. Mauro and
McDougall [2001] describe recent developments in threading the Solaris kernel.
Solomon and Russinovich [2000] discuss threading in Windows 2000. Bovet
and Cesati [2002] explain how Linux handles threading.
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CPY
Scheduling

5.1

CPU scheduling is the basis of multiprogrammed operating systems. By
switching the CPU among processes, the operating system can make the
computer more productive. In this chapter, we introduce basic CPU-scheduling
concepts and present several CPU-scheduling algorithms. We also consider the
problem of selecting an algorithm for a particular system.

In Chapter 4, we introduced threads to the process model. On operating
systems that support them, it is kernel-level threads—not processes—that are
in fact being scheduled by the operating system. However, the terms process
scheduling and thread scheduling are often used interchangeably. In this
chapter, we use process scheduling when discussing general scheduling concepts
and thread scheduling to refer to thread-specific ideas.

CHAPTER OBJECTIVES

¢ To introduce CPU scheduling, which is the basis for multiprogrammed
operating systems.

¢ To describe various CPU-scheduling algorithms,

» To discuss evaluation criteria for selecting a CPU-scheduling algorithm for
a particular system.

Basic Concepts

In a single-processor system, only one process can run at a time; any others
must wait until the CPU is free and can be rescheduled. The objective of
multiprogramming is to have some process running at all times, to maximize
CPU utilization. The idea is relatively simple. A process is executed until
it must wait, typically for the completion of some 1/0 request. In a simple
computer system, the CPU then just sits idle. All this waiting time is wasted;
no useful work is accomplished. With multiprogramming, we try to use this
time productively. Several processes are kept in memory at one time. When
one process has to wait, the operating system takes the CPU away from that
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Figure 5.2 Histogram of CPU-burst durations.

program might have a few long CPU bursts. This distribution can be important
in the selection of an appropriate CPU-scheduling algorithm.

5.1.2 CPU Scheduler

Whenever the CPU becomes idle, the operating system must select one of the
processes in the ready queue to be executed. The selection process is carried
out by the short-term scheduler (or CPU scheduler). The scheduler selects a
process from the processes in memory that are ready to execute and allocates
the CPU to that process.

Note that the ready queue is not necessarily a first-in, first-out (FIFO) queue.
As we shall see when we consider the various scheduling algorithms, a ready
queue can be implemented as a FIFO queue, a priority queue, a tree, or simply
an unordered linked list. Conceptually, however, all the processes in the ready
queue are lined up waiting for a chance to run on the CPU. The records in the
queues are generally process control blocks (PCBs) of the processes.

5.1.3 Preemptive Scheduling

CPU-scheduling decisions may take place under the following four circum-
stances:

1. When a process switches from the running state to the waiting state (for
example, as the result of an I/0 request or an invocation of wait for the
termination of one of the child processes)
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2. When a process switches from the running state to the ready state {for
example, when an interrupt occurs)

3. When a process switches from the waiting state to the ready state (for
example, at completion of 1/0)

4. When a process terminates

For situations 1 and 4, there is no choice in terms of scheduling. A new process
(if one exists in the ready queue) must be selected for execution. There is a
choice, however, for situations 2 and 3.

When scheduling takes place only under circumstances 1 and 4, we say
that the scheduling scheme is nonpreemptive or cooperative; otherwise, it
is preemptive. Under nonpreemptive scheduling, once the CPU has been
allocated to a process, the process keeps the CPU until it releases the CPU either
by terminating or by switching to the waiting state. This scheduling method
was used by Microsoft Windows 3.x; Windows 95 introduced preemptive
scheduling, and all subsequent versions of Windows operating systems have
used preemptive scheduling. The Mac OS X operating system for the Macintosh
uses preemptive scheduling; previous versions of the Macintosh operating
system relied on cooperative scheduling. Cooperative scheduling is the only
method that can be used on certain hardware platforms, because it does not
require the special hardware (for example, a timer) needed for preemptive
scheduling,.

Unfortunately, preemptive scheduling incurs a cost associated with access
to shared data. Consider the case of two processes that share data. While one
is updating the data, it is preempted so that the second process can run. The
second process then tries to read the data, which are in an inconsistent state. In
such situations, we need new mechanisms to coordinate access to shared data;
we discuss this topic in Chapter 6.

Preemption also affects the design of the operating-system kernel. During
the processing of a system call, the kernel may be busy with an activity on
behalf of a process. Such activities may involve changing important kernel
data (for instance, 1/0 queues). What happens if the process is preempted in
the middle of these changes and the kernel (or the device driver) needs to
read or modify the same structure? Chaos ensues. Certain operating systems,
including most versions of UNIX, deal with this problem by waiting either
for a system call to complete or for an I/0 block to take place before doing a
context switch. This scheme ensures that the kernel structure is simple, since
the kernel will not preempt a process while the kernel data structures are in
an inconsistent state. Unfortunately, this kernel-execution model is a poor one
for supporting real-time computing and multiprocessing. These problems, and
their solutions, are described in Sections 5.4 and 19.5.

Because interrupts can, by definition, occur at any time, and because
they cannot always be ignored by the kernel, the sections of code affected
by interrupts must be guarded from simultaneous use. The operating system
needs to accept interrupts at almost all times; otherwise, input might be lost or
output overwritten. So that these sections of code are not accessed concurrently
by several processes, they disable interrupts at entry and reenable interrupts
at exit. It is important to note that sections of code that disable interrupts do
not occur very often and typically contain few instructions.
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5.1.4 Dispatcher s

Another component involved in the CPU-scheduling function is the dispatcher.
The dispatcher is the module that gives control of the CPU to the process selected
by the short-term scheduler. This function involves the following:

¢ Switching context
e Switching to user mode

e Jumping to the proper location in the user program to restart that program

The dispatcher should be as fast as possible, since it is invoked during every
process switch. The time it takes for the dispatcher to stop one process and
start another running is known as the dispatch latency.

Scheduling Criteria

Different CPU scheduling algorithms have different properties, and the choice
of a particular algorithm may favor one class of processes over another. In
choosing which algorithm to use in a particular situation, we must consider
the properties of the various algorithms.

Many criteria have been suggested for comparing CPU scheduling algo-
rithms. Which characteristics are used for comparison can make a substantial
difference in which algorithm is judged to be best. The criteria include the
following:

e CPU utilization. We want to keep the CPU as busy as possible. Concep-
tually, CPU utilization can range from 0 to 100 percent. In a real system, it
should range from 40 percent (for a lightly loaded system) to 90 percent
(for a heavily used system).

e Throughput. If the CPU is busy executing processes, then work is being
done. One measure of work is the number of processes that are completed
per time unit, called throughput. For long processes, this rate may be one
process per hour; for short transactions, it may be 10 processes per second.

® Turnaround time. From the point of view of a particular process, the
important criterionis how long it takes to execute that process. The interval
from the time of submission of a process to the time of completion is the
turnaround time. Turnaround time is the sum of the periods spent waiting
to get into memory, waiting in the ready queue, executing on the CPU, and
doing 1/0.

e Waiting time. The CPU scheduling algorithm does not affect the amount
of time during which a process executes or does 1/0; it affects only the- -
amount of time that a process spends waiting in the ready queue. Waiting
time is the sum of the periods spent waiting in the ready queue.

® Response time. In an interactive system, turnaround time may not be
the best criterion. Often, a process can produce some output fairly early
and can continue computing new results while previous results are being
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output to the user. Thus, another measure is the time from the submission
of a request until the first response is produced. This measure, called
response time, is the time it takes to start responding, not the time it takes
to output the response. The turnaround time is generally limited by the
speed of the output device.

It is desirable to maximize CPU utilization and throughput and to minimize
turnaround time, waiting time, and response time. In most cases, we optimize
the average measure. However, under some circumstances, it is desirable
to optimize the minimum or maximum values rather than the average. For
example, to guarantee that all users get good service, we may want to minimize
the maximum response time.

Investigators have suggested that, for interactive systems (such as time-
sharing systems), it is more important to minimize the variance in the response
time than to minimize the average response time. A system with reasonable
and predictable response time may be considered more desirable than a system
that is faster on the average but is highly variable. However, little work has
been done on CPU-scheduling algorithms that minimize variance.

As we discuss various CPU-scheduling algorithms in the following section,
we will illustrate their operation. An accurate illustration should involve many
processes, each being a sequence of several hundred CPU bursts and 1/0 bursts.
For simplicity, though, we consider only one CPU burst (in milliseconds) per
process in our examples. Our measure of comparison is the average waiting
time. More elaborate evaluation mechanisms are discussed in Section 5.7.

Scheduling Algorithms

CPU scheduling deals with the problem of deciding which of the processes
in the ready queue is to be allocated the CPU. There are many different CPU
scheduling algorithms. In this section, we describe several of them.

5.3.1 First-Come, First-Served Scheduling

By far the simplest CPU-scheduling algorithm is the first-come, first-served
(FCFS) scheduling algorithm. With this scheme, the process that requests the
CPU first is allocated the CPU first. The implementation of the FCFS policy is
easily managed with a FIFO queue. When a process enters the ready queue, its
PCB is linked onto the tail of the queue. When the CPU is free, it is allocated to
the process at the head of the queue. The running process is then removed from
the queue. The code for FCFS scheduling is simple to write and understand.

The average waiting time under the FCFS policy, however, is often quite
long. Consider the following set of processes that arrive at time 0, with the
length of the CPU burst given in milliseconds:

Process Burst Timg
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If the processes arrive in the order Py, P, P;, and are served in FCFS erder,
we get the result shown in the following Gantt chart:

P, Po | Py

0 24 27 30

The waiting time is 0 milliseconds for process P;, 24 milliseconds for process
P>, and 27 milliseconds for process P;. Thus, the average waiting time is (0
+ 24 + 27)/3 = 17 milliseconds. If the processes arrive in the order P, P;, Py,
however, the results will be as shown in the following Gantt chart:

P, | P Py

0 3 6 30

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction
is substantial. Thus, the average waiting time under an FCFS policy is generally
not minimal and may vary substantially if the process’s CPU burst times vary
greatly.

In addition, consider the performance of FCFS scheduling in a dynamic
situation. Assume we have one CPU-bound process and many I/0-bound
processes. As the processes flow around the system, the following scenario
may result. The CPU-bound process will get and hold the CPU. During this
time, all the other processes will finish their 1/0 and will move into the ready
queue, waiting for the CPU. While the processes wait in the ready queue, the
1/0 devices are idle. Eventually, the CPU-bound process finishes its CPU burst
and moves to an 1/0 device. All the 1/0-bound processes, which have short
CPU bursts, execute quickly and move back to the 1/0 queues. At this point,
the CPU sits idle. The CPU-bound process will then move back to the ready
queue and be allocated the CPU. Again, all the 1/0 processes end up waiting in
the ready queue until the CPU-bound process is done. There is a convoy effect
as all the other processes wait for the one big process to get off the CPU. This
effect results in lower CPU and device utilization than might be possible if the
shorter processes were allowed to go first.

The FCFS scheduling algorithm is nonpreemptive. Once the CPU has been
allocated to a process, that process keeps the CPU until it releases the CPU, either
by terminating or by requesting 1/0. The FCFS algorithm is thus particularly
troublesome for time-sharing systems, where it is important that each user get
a share of the CPU at regular intervals. It would be disastrous to allow one
process to keep the CPU for an extended period.

5.3.2 Shortest-Job-First Scheduling

A different approach to CPU scheduling is the shortest-job-first (SJF) schedul-
ing algorithm. This algorithm associates with each process the length of the
process’s next CPU burst. When the CPU is available, it is assigned to the process
that has the smallest next CPU burst. If the next CPU bursts of two processes are



160

Chapter 5 CPU Scheduling

the same, FCFS scheduling is used to break the tie. Note that a more appropriate
term for this scheduling method would be the shortest-next-CPU-burst algorithm,
because scheduling depends on the length of the next CPU burst of a process,
rather than its total length. We use the term SJF because most people and
textbooks use this term to refer to this type of scheduling.

As an example of SJF scheduling, consider the following set of processes,
with the length of the CPU burst given in milliseconds:

Process Burst Time

Py 6
P 8
Ps 7
Py 3

Using SJF scheduling, we would schedule these processes according to the
following Gantt chart:

P4 P, P3 Ps

0 3 9 16 24

The waiting time is 3 milliseconds for process P;, 16 milliseconds for process
P>, 9 milliseconds for process P;, and 0 milliseconds for process Py. Thus, the
average waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds. By comparison, if
we were using the FCFS scheduling scheme, the average waiting time would
be 10.25 milliseconds.

The SJF scheduling algorithm is provably optimal, in that it gives the
minimum average waiting time for a given set of processes. Moving a short
process before a long one decreases the waiting time of the short process more
than it increases the waiting time of the long process. Consequently, the average
waiting time decreases.

The real difficulty with the SJF algorithm is knowing the length of the next
CPU request. For long-term (job) scheduling in a batch system, we can use as
the length the process time limit that a user specifies when he submits the
job. Thus, users are motivated to estimate the process time limit accurately,
since a lower value may mean faster response. (Too low a value will cause
a time-limit-exceeded error and require resubmission.) SJF scheduling is used
frequently in long-term scheduling.

Although the §JF algorithm is optimal, it cannot be implemented at the level
of short-term CPU scheduling. There is no way to know the length of the next
CPU burst. One approach is to try to approximate SJF scheduling. We may not . .
know the length of the next CPU burst, but we may be able to predict its value.
We expect that the next CPU burst will be similar in length to the previous ones.
Thus, by computing an approximation of the length of the next CPU burst, we
can pick the process with the shortest predicted CPU burst.

The next CPU burst is generally predicted as an exponential average of the
measured lengths of previous CPU bursts. Let #, be the length of the nth CPU
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burst, and let 7,11 be our predicted value for the next CPU burst. Then, for «, 0
< a < 1, define

T,1+] = tn -+ (1 - a)Tn.

This formula defines an exponential average. The value of f, contains our
most recent information; 7, stores the past history. The parameter a controls
the relative weight of recent and past history in our prediction. If o = 0, then
Trs1 = Ty, and recent history has no effect (current conditions are assumed
to be transient); if « = 1, then 7,47 = f,, and only the most recent CPU burst
matters (history is assumed to be old and irrelevant). More commonly, a =
1/2, so recent history and past history are equally weighted. The initial 19 can
be defined as a constant or as an overall system average. Figure 5.3 shows an
exponential average with a = 1/2 and 7, = 10.

To understand the behavior of the exponential average, we can expand the
formula for 7,41 by substituting for 7, to find

T =y + (1 — ooty 1+ -4+ (1 — u)jutl,u/- +--4+(1- o) .

Since both « and (1 —~ «) are less than or equal to 1, each successive term has
less weight than its predecessor.

The SJF algorithm can be either preemptive or nonpreemptive. The choice
arises when a new process arrives at the ready queue while a previous process is
still executing. The next CPU burst of the newly arrived process may be shorter
than what is left of the currently executing process. A preemptive SJF algorithm

CPU burst (f) 6 4 6 4 13 13 13

"guess” (1) 10 8 6 6 5 9 i1 12

Figure 5.3 Prediction of the length of the next CPU burst.
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will preempt the currently executing process, whereas a nonpreemptive SJF
algorithm will allow the currently running process to finish its CPU burst.
Preemptive SJF scheduling is sometimes called shortest-remaining-time-first
scheduling.

As an example, consider the following four processes, with the length of
the CPU burst given in milliseconds:

Process Arrival Time  Burst Time

P 0 8
P 1 4
P 2 9
Py 3 5

If the processes arrive at the ready queue at the times shown and need the
indicated burst times, then the resulting preemptive SJF schedule is as depicted
in the following Gantt chart:

Pq Py Py ' Py P

Process P is started at time 0, since it is the only process in the queue. Process
P, arrives at time 1. The remaining time for process P; (7 milliseconds) is
larger than the time required by process P, (4 milliseconds), so process P; is
preempted, and process P, is scheduled. The average waiting time for this
example is (10 — 1) + (1 — 1) + (17 — 2) + (5 — 3))/4 = 26/4 = 6.5 milliseconds.
Nonpreemptive SJF scheduling would result in an average waiting time of 7.75
milliseconds.

5.3.3 Priority Scheduling

The SJF algorithm is a special case of the general priority scheduling algorithm.
A priority is associated with each process, and the CPU is allocated to the process
with the highest priority. Equal-priority processes are scheduled in FCFS order.
An SJF algorithm is simply a priority algorithm where the priority (p) is the
inverse of the (predicted) next CPU burst. The larger the CPU burst, the lower
the priority, and vice versa. '

Note that we discuss scheduling in terms of high priority and low priority.
Priorities are generally indicated by some fixed range of numbers, such as 0
to 7 or 0 to 4,095. However, there is no general agreement on whether 0 is the
highest or lowest priority. Some systems use low numbers to represent low
priority; others use low numbers for high priority. This difference can lead to
confusion. In this text, we assume that low numbers represent high priority.

As an example, consider the following set of processes, assumed to have
arrived at time 0, in the order Py, P, - -+, P5, with the length of the CPU burst
given in milliseconds:
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process | time
P 1
P | 7

average turnaround time

1 2 3 4 5 6 7
time quantum

Figure 5.5 The way in which turnaround time varies with the time quantum.

Turnaround time also depends on the size of the time quantum. As we can
see from Figure 5.5, the average turnaround time of a set of processes does
not necessarily improve as the time-quantum size increases. In general, the
average turnaround time can be improved if most processes finish their next
CPU burst in a single time quantum. For example, given three processes of 10
time units each and a quantum of 1 time unit, the average turnaround time is
29. If the time quantum is 10, however, the average turnaround time drops to
20. If context-switch time is added in, the average turnaround time increases
for a smaller time quantum, since more context switches are required.

Although the time quantum should be large compared with the context-
switch time, it should not be too large. If the time quantum is too large, RR
scheduling degenerates to FCFS policy. A rule of thumb is that 80 percent of the
CPU bursts should be shorter than the time quantum.

5.3.5 Multilevel Queue Scheduling

Another class of scheduling algorithms has been created for situations in
which processes are easily classified into different groups. For example, a
common division is made between foreground (interactive) processes and
background (batch) processes. These two types of processes have different
response-time requirements and so may have different scheduling needs. In-
addition, foreground processes may have priority (externally defined) over
background processes.

A multilevel queue scheduling algorithm partitions the ready queue into
several separate queues (Figure 5.6). The processes are permanently assigned to
one queue, generally based on some property of the process, such as memory
size, process priority, or process type. Each queue has its own scheduling
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In general, a multilevel feedback-queue scheduler is defined by the
following parameters:

e The number of queues
e The scheduling algorithm for each queue

e The method used to determine when to upgrade a process to a higher-
priority queue

e The method used to determine when to demote a process to a lower-
priority queue

e The method used to determine which queue a process will enter when that
process needs service

The definition of a multilevel feedback-queue scheduler makes it the most
general CPU-scheduling algorithm. It can be configured to match a specific
system under design. Unfortunately, it is also the most complex algorithm,
since defining the best scheduler requires some means by which to select
values for all the parameters.

Multiple-Processor Scheduling

Our discussion thus far has focused on the problems of scheduling the CPU in
a system with a single processor. If multiple CPUs are available, load sharing
becomes possible; however, the scheduling problem becomes correspondingly
more complex. Many possibilities have been tried; and as we saw with single-
processor CPU scheduling, there is no one best solution. Here, we discuss
several concerns in multiprocessor scheduling. We concentrate on systems
in which the processors are identical —homogeneous—in terms of their
functionality; we can then use any available processor to run any process
in the queue. (Note, however, that even with homogeneous multiprocessors,
there are sometimes limitations on scheduling. Consider a system with an [/0
device attached to a private bus of one processor. Processes that wish to use
that device must be scheduled to run on that processor.)

5.4.1 Approaches to Multiple-Processor Scheduling

One approach to CPU scheduling in a multiprocessor system has all scheduling
decisions, [/O processing, and other system activities handled by a single
processor—the master server. The other processors execute only user code.
This asymmetric multiprocessing is simple because only one processor
accesses the system data structures, reducing the need for data sharing.

A second approach uses symmetric multiprocessing (SMP), where each
processor is self-scheduling. All processes may be in a common ready queue, or
each processor may have its own private queue of ready processes. Regardless,
scheduling proceeds by having the scheduler for each processor examine the
ready queue and select a process to execute. As we shall see in Chapter 6,
if we have multiple processors trying to access and update a common data
structure, the scheduler must be programmed carefully: We must ensure that
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two processors do not choose the same process and that processes are nét lost
from the queue. Virtually all modern operating systems support SMP, including
Windows XP, Windows 2000, Solaris, Linux, and Mac OS X.

In the remainder of this section, we will discuss issues concerning SMP
systems.

5.4.2 Processor Affinity

Consider what happens to cache memory when a process has been running on
a specific processor: The data most recently accessed by the process populates
the cache for the processor; and as a result, successive memory accesses by
the process are often satisfied in cache memory. Now consider what happens
if the process migrates to another processor: The contents of cache memory
must be invalidated for the processor being migrated from, and the cache for
the processor being migrated to must be re-populated. Because of the high
cost of invalidating and re-populating caches, most SMP systems try to avoid
migration of processes from one processor to another and instead attempt to
keep a process running on the same processor. This is known as processor
affinity, meaning that a process has an affinity for the processor on which it is
currently running.

Processor affinity takes several forms. When an operating system has a
policy of attempting to keep a process running on the same processor—but
not guaranteeing that it will do so— we have a situation known as soft affinity.
Here, it 1s possible for a process to migrate between processors. Some systems
—such as Linux—also provide system calls that support hard affinity, thereby
allowing a process to specify that it is not to migrate to other processors.

5.4.3 Load Balancing

On SMP systems, it is important to keep the workload balanced among all
processors to fully utilize the benefits of having more than one processor.
Otherwise, one or more processors may sit idle while other processors have
high workloads along with lists of processes awaiting the CPU. Load balancing
attempts to keep the workload evenly distributed across all processors in
an SMP system. It is important to note that load balancing is typically only
necessary on systems where each processor has its own private queue of eligible
processes to execute. On systems with a common run queue, load balancing
is often unnecessary, because once a processor becomes idle, it immediately
extracts a runnable process from the common run queue. It is also important to
note, however, that in most contemporary operating systems supporting SMP,
each processor does have a private queue of eligible processes.

There are two general approaches to load balancing: push migration and
pull migration. With push migration, a specific task periodically checks the
load on each processor and~—if it finds an imbalance—evenly distributes the - -
load by moving (or pushing) processes from overloaded to idle or less-busy
processors. Pull migration occurs when an idle processor pulls a waiting task
from a busy processor. Push and pull migration need not be mutually exclusive
and are in fact often implemented in parallel on load-balancing systems. For
example, the Linux scheduler (described in Section 5.6.3) and the ULE scheduler
available for FreeBSD systems implement both techniques. Linux runs its load-



T T YU P VIR RS LV UIVIVI VS Ry Sy & )

g

wive g

[P R IIL R VIV YT }

5.4 Multiple-Processor Scheduling 171

balancing algorithm every 200 milliseconds (push migration) or whenever the
run queue for a processor is empty (pull migration).

Interestingly, load balancing often counteracts the benefits of processor
affinity, discussed in Section 5.4.2. That is, the benefit of keeping a process
running on the same processor is that the process can take advantage of its
data being in that processor’s cache memory. By either pulling or pushing a
process from one processor to another, we invalidate this benefit. As is often the
case in systems engineering, there is no absolute rule concerning what policy
is best. Thus, in some systems, an idle processor always pulls a process from
a non-idle processor; and in other systems, processes are moved only if the
imbalance exceeds a certain threshold.

5.4.4 Symmetric Multithreading

SMP systems allow several threads to run concurrently by providing multiple
physical processors. An alternative strategy is to provide multiple logical —
rather than plysical —processors. Such a strategy is known as symmetric
multithreading (or SMT); it has also been termed hyperthreading technology
on Intel processors.

The idea behind SMT is to create multiple logical processors on the same
physical processor, presenting a view of several logical processors to the operat-
ing system, even on a system with only a single physical processor. Each logical
processor has its own architecture state, which includes general-purpose and
machine-state registers. Furthermore, each logical processor is responsible for
its own interrupt handling, meaning that interrupts are delivered to—and
handled by—logical processors rather than physical ones. Otherwise, each
logical processor shares the resources of its physical processor, such as cache
memory and buses. Figure 5.8 illustrates a typical SMT architecture with two
physical processors, each housing two logical processors. From the operating
system'’s perspective, four processors are available for work on this system.

It is important to recognize that SMT is a feature provided in hardware, not
software. That is, hardware must provide the representation of the architecture
state for each logical processor, as well as interrupt handling. Operating
systems need not necessarily be designed differently if they are to run on an
SMT system; however, certain performance gains are possible if the operating
system is aware that it is running on such a system. For example, consider a
system with two physical processors, both of which are idle. The scheduler
should first try scheduling separate threads on each physical processor rather

[ logicat | { logical al | | logical
1 CPU || CPU 1| CPU
WA R bl S e P
- physical .
epul .
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system bus

Figure 5.8 A typical SMT architecture
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than on separate logical processors on the same physical processor. Otherwise,
both logical processors on one physical processor could be busy while the other
physical processor remained idle.

Thread Scheduling

In Chapter 4, we introduced threads to the process model, distinguishing
between user-level and kernel-level threads. On operating systems that support
them, it is kernel-level threads—not processes—that are being scheduled by
the operating system. User-level threads are managed by a thread library,
and the kernel is unaware of them. To run on a CPU, user-level threads
must ultimately be mapped to an associated kernel-level thread, although
this mapping may be indirect and may use a lightweight process (LWP). In this
section, we explore scheduling issues involving user-level and kernel-level
threads and offer specific examples of scheduling for Pthreads.

5.5.1 Contention Scope

One distinction between user-level and kernel-level threads lies in how they
are scheduled. On systems implementing the many-to-one (Section 4.2.1) and
many-to-many (Section 4.2.3) models, the thread library schedules user-level
threads to run on an available LWP, a scheme known as process-contention
scope (PCS), since competition for the CPU takes place among threads belonging
to the same process. When we say the thread library schedules user threads onto
available LWPs, we do not mean that the thread is actually running on a CPU;
this would require the operating system to schedule the kernel thread onto
a physical CPU. To decide which kernel thread to schedule onto a CPU, the
kernel uses system-contention scope (SCS). Competition for the CPU with SCS
scheduling takes place among all threads in the system. Systems using the
one-to-one model (such as Windows XP, Solaris 9, and Linux) schedule threads
using only SCS.

Typically, PCS is done according to priority-—the scheduler selects the
runnable thread with the highest priority to run. User-level thread priorities
are set by the programmer and are not adjusted by the thread library, although
some thread libraries may allow the programmer to change the priority of
a thread. It is important to note that PCS will typically preempt the thread
currently running in favor of a higher-priority thread; however, there is no
guarantee of time slicing (Section 5.3.4) among threads of equal priority.

5.5.2 Pthread Scheduling

We provided a sample POSIX Pthread program in Section 4.3.1, along with an
introduction to thread creation with Pthreads. Now, we highlight the POSIX
Pthread API that allows specifying either PCS or SCS during thread creation.
Pthreads identifies the following contention scope values:

e PTHREAD SCOPE_PROCESS schedules threads using PCS scheduling.
e PTHREAD.SCOPE.SYSTEM schedules threads using SCS scheduling.
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On systems implementing the many-to-many model (Section 4.2.3), the
PTHREAD.SCOPE_PROCESS policy schedules user-level threads onto available
LWPs. The number of LWPs is maintained by the thread library, perhaps using
scheduler activations (Section 4.4.6). The PTHREAD_SCOPE_SYSTEM scheduling
policy will create and bind an LWP for each user-level thread on many-to-many
systems, effectively mapping threads using the one-to-one policy (Section
42.2).

The Pthread IPC provides the following two functions for getting—and
setting—the contention scope policy:

e pthread attr_setscope(pthread_attr_t *attr, int scope)

e pthread. attr getscope(pthread attr_t *attr, int *scope)

The first parameter for both functions contains a pointer to the attribute set for
the thread. The second parameter for the pthread_attr_setscope () function
is passed either the PTHREAD_SCOPE_SYSTEM or PTHREAD_SCOPE_PROCESS
value, indicating how the contention scope is to be set. In the case of
pthread attr_getscope(), this second parameter contains a pointer to an
int value that is set to the current value of the contention scope. If an error
occurs, each of these functions returns non-zero values.

In Figure 5.9, we illustrate a Pthread program that first determines the
existing contention scope and sets it to PTHREAD_SCOPE_PROCESS. It then creates
five separate threads that will run using the SCS scheduling policy. Note that on
some systems, only certain contention scope values are allowed. For example,
Linux and Mac OS X systems allow only PTHREAD_SCOPE_SYSTEM.

Operating System Examples

We turn next to a description of the scheduling policies of the Solaris, Windows
XP, and Linux operating systems. It is important to remember that we are
describing the scheduling of kernel threads with Solaris and Linux. Recall that
Linux does not distinguish between processes and threads; thus, we use the
term fask when discussing the Linux scheduler.

5.6.1 Example: Solaris Scheduling
Solaris uses priority-based thread scheduling. It has defined four classes of
scheduling, which are, in order of priority:

1. Real time

2. System
3. Time sharing
4. Interactive

Within each class there are different priorities and different scheduling algo-
rithms. Solaris scheduling is illustrated in Figure 5.10.
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#include <pthread.h>
#include <stdio.h>
#define NUM.THREADS 5

int main(int argc, char *argvi])
{
int 1, scope;
pthread._t tid[NUM.THREADS] ;
pthread attr_t attr;

/* get the default attributes */
pthread._attr_init (&attr) ;

/* first inquire on the current scope */

if (pthread attr getscope(&attr, &scope) != 0)
fprintf (stderr, "Unable to get scheduling scope\n");
else {
if (scope == PTHREAD _SCOPE_PRCCESS)
printf ("PTHREAD SCOPE_PROCESS") ;
elgse if (scope == PTHREAD._SCOPE_SYSTEM)
printf ("PTHREAD_SCOPE_SYSTEM") ;
else

fprintf (stderr, "Illegal scope value.\n");

/* set the scheduling algorithm to PCS or SCS */
pthreadwattr_setscope (&attr, PTHREAD_SCOPE_SYSTEM) ;

/* create the threads */
for (i = 0; 1 < NUM_THREADS; i++)
pthread create (&tid[i], &attr, runner,NULL) ;

/* now join on each thread */
for (1 = 0; 1 <« NUM_THREADS; i++)
pthread join(tid[i], NULL) ;

/* Bach thread will begin control in this function */
void *runner (void *param)
{

/* do zome work ... */

pthread-exit (0) ;

Figure 5.9 Pthread scheduling API.
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Figure 5.11 Solaris dispatch table for interactive and time-sharing threads.

The lowest priority (priority 0) has the highest time quantum (200
milliseconds), and the highest priority (priority 59) has the lowest time
quantum (20 milliseconds).

¢ Time quantum expired. The new priority of a thread that has used
its entire time quantum without blocking. Such threads are considered
CPU-intensive. As shown in the table, these threads have their priorities
lowered.

® Return from sleep. The priority of a thread that is returning from sleeping
(such as waiting for 1/0). As the table illustrates, when I/0 is available
for a waiting thread, its priority is boosted to between 50 and 59, thus
supporting the scheduling policy of providing good response time for
interactive processes.

Solaris 9 introduced two new scheduling classes: fixed priority and fair
share. Threads in the fixed-priority class have the same priority range as
those in the time-sharing class; however, their priorities are not dynamically
adjusted. The fair-share scheduling class uses CPU shares instead of priorities
to make scheduling decisions. CPU shares indicate entitlement to available CPU
resources and are allocated to a set of processes (known as a project).

Solaris uses the system class to run kernel processes, such as the scheduler
and paging daemon. Once established, the priority of a system process does
not change. The system class is reserved for kernel use (user processes running
in kernel mode are not in the systems class).
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Threads in the real-time class are given the highest priority. This assignment
allows a real-time process to have a guaranteed response from the system
within a bounded period of time. A real-time process will run before a process
in any other class. In general, however, few processes belong to the real-time
class.

Each scheduling class includes a set of priorities. However, the scheduler
converts the class-specific priorities into global priorities and selects the thread
with the highest global priority to run. The selected thread runs on the CPU
until it (1) blocks, (2) uses its time slice, or (3) is preempted by a higher-priority
thread. If there are multiple threads with the same priority, the scheduler uses
a round-robin queue. As mentioned, Solaris has traditionally used the many-
to-many model (4.2.3) but with Solaris 9 switched to the one-to-one model
(4.2.2).

5.6.2 Example: Windows XP Scheduling

Windows XP schedules threads using a priority-based, preemptive scheduling
algorithm. The Windows XP scheduler ensures that the highest-priority thread
will always run. The portion of the Windows XP kernel that handles scheduling
is called the dispatcher. A thread selected to run by the dispatcher will run until
it is preempted by a higher-priority thread, until it terminates, until its time
quantum ends, or until it calls a blocking system call, such as for 1/0. If a
higher-priority real-time thread becomes ready while a lower-priority thread
is running, the lower-priority thread will be preempted. This preemption gives
a real-time thread preferential access to the CPU when the thread needs such
access.

The dispatcher uses a 32-level priority scheme to determine the order of
thread execution. Priorities are divided into two classes. The variable class
contains threads having priorities from 1 to 15, and the real-time class contains
threads with priorities ranging from 16 to 31. (There is also a thread running at
priority O that is used for memory management.) The dispatcher uses a queue
for each scheduling priority and traverses the set of queues from highest to
lowest until it finds a thread that is ready to run. If no ready thread is found,
the dispatcher will execute a special thread called the idle thread.

There is a relationship between the numeric priorities of the Windows XP
kernel and the Win32 APL. The Win32 API identifies several priority classes to
which a process can belong. These include:

e REALTIME_PRIORITY CLASS

e HIGH_PRIORITY_CLASS

e ABOVE_NORMAL_PRIORITY_CLASS

® NORMAL_PRIORITY.CLASS

e BELOW_NORMAL_PRIORITY_CLASS

e [DLE PRIORITY.CLASS

Priorities in all classes except the REALTIME_PRIORITY.CLASS are variable,

meaning that the priority of a thread belonging to one of these classes can
change.
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Figure 5.12 Windows XP priorities.

Within each of the priority classes is a relative priority. The values for
relative priority include:

o TIME_CRITICAL

e HIGHEST

e ABOVE.NORMAL
e NORMAL

e BELOW_NORMAL
e [OWEST

e |DLE

The priority of each thread is based on the priority class it belongs to and its
relative priority within that class. This relationship is shown in Figure 5.12. The
values of the priority classes appear in the top row. The left column contains the
values for the relative priorities. For example, if the relative priority of a thread
in the ABOVE.NORMAL_PRIORITY CLASS is NORMAL, the numeric priority of
that thread is 10.

Furthermore, each thread has a base priority representing a value in the
priority range for the class the thread belongs to. By default, the base priority
is the value of the NORMAL relative priority for that specific class. The base
priorities for each priority class are:

e REALTIME_PRIORITY CLASS—24

e HIGH PRIORITY CLASS—13

¢ ABOVE.NORMAL_PRIORITY.CLASS—10
® NORMAL.PRIORITY_CLASS—38

e BELOW_NORMAL.PRIORITY_.CLASS—6
e [DLE PRIORITY.CLASS—4
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Processes are typically members of the NORMAL_PRIORITY_CLASS. A pro-
cess will belong to this class unless the parent of the process was of the
IDLE_PRIORITY.CLASS or unless another class was specified when the process
was created. The initial priority of a thread is typically the base priority of the
process the thread belongs to.

When a thread’s time quantum runs out, that thread is interrupted; if the
thread is in the variable-priority class, its priority is lowered. The priority
is never lowered below the base priority, however. Lowering the thread’s
priority tends to limit the CPU consumption of compute-bound threads. When a
variable-priority thread is released from a wait operation, the dispatcher boosts
the priority. The amount of the boost depends on what the thread was waiting
for; for example, a thread that was waiting for keyboard 1/0 would get a large
increase, whereas a thread waiting for a disk operation would get a moderate
one. This strategy tends to give good response times to interactive threads that
are using the mouse and windows. It also enables I/0-bound threads to keep
the I/O devices busy while permitting compute-bound threads to use spare
CPU cycles in the background. This strategy is used by several time-sharing
operating systems, including UNIX. In addition, the window with which the
user is currently interacting receives a priority boost to enhance its response
time.

When a user is running an interactive program, the system needs to provide
especially good performance for that process. For this reason, Windows XP
has a special scheduling rule for processes in the NORMAL PRIORITY.CLASS.
Windows XP distinguishes between the foreground process that is currently
selected on the screen and the background processes that are not currently
selected. When a process moves into the foreground, Windows XP increases the
scheduling quantum by some factor—typically by 3. This increase gives the
foreground process three times longer to run before a time-sharing preemption
occurs.

5.6.3 Example: Linux Scheduling

Prior to version 2.5, the Linux kernel ran a variation of the traditional UNIX
scheduling algorithm. Two problems with the traditional UNIX scheduler are
that it does not provide adequate support for SMP systems and that it does
not scale well as the number of tasks on the system grows. With version 2.5,
the scheduler was overhauled, and the kernel now provides a scheduling
algorithm that runs in constant time—known as O(1)—regardless of the
number of tasks on the system. The new scheduler also provides increased
support for SMP, including processor affinity and load balancing, as well as
providing fairness and support for interactive tasks.

The Linux scheduler is a preemptive, priority-based algorithm with two
separate priority ranges: a real-time range from 0 to 99 and a nice value ranging
from 100 to 140. These two ranges map into a global priority scheme whereby
numerically lower values indicate higher priorities.

Unlike schedulers for many other systems, including Solaris (5.6.1) and
Windows XP (5.6.2), Linux assigns higher-priority tasks longer time quanta and
lower-priority tasks shorter time quanta. The relationship between priorities
and time-slice length is shown in Figure 5.13.
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Figure 5.13 The relationship between priorities and time-slice length.

A runnable task is considered eligible for execution on the CPU as long
as it has time remaining in its time slice. When a task has exhausted its time
slice, it is considered expired and is not eligible for execution again until all
other tasks have also exhausted their time quanta. The kernel maintains a list
of all runnable tasks in a runqueue data structure. Because of its support for
SMP, each processor maintains its own runqueue and schedules itself indepen-
dently. Each runqueue contains two priority arrays—active and expired. The
active array contains all tasks with time remaining in their time slices, and the
expired array contains all expired tasks. Each of these priority arrays contains a
list of tasks indexed according to priority (Figure 5.14). The scheduler chooses
the task with the highest priority from the active array for execution on the
CPU. On multiprocessor machines, this means that each processor is scheduling
the highest-priority task from its own runqueue structure. When all tasks have
exhausted their time slices (that is, the active array is empty), the two priority
arrays are exchanged; the expired array becomes the active array, and vice
versa,

Linux implements real-time scheduling as defined by POSIX.1b, which is
fully described in Section 5.5.2. Real-time tasks are assigned static priorities.
All other tasks have dynamic priorities that are based on their nice values plus
or minus the value 5. The interactivity of a task determines whether the value
5 will be added to or subtracted from the nice value. A task’s interactivity
is determined by how long it has been sleeping while waiting for 1/0. Tasks

active expired
array array
priority task lists priority task lists
(0] 0—0 [0] o—0—9
[1] O—0—0 (1] O
[140] © [140]

Figure 5.14 List of tasks indexed according to priority.
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that are more interactive typically have longer sleep times and therefore are
more likely to have adjustments closer to -5, as the scheduler favors interactive
tasks. The result of such adjustments will be higher priorities for these tasks.
Conversely, tasks with shorter sleep times are often more CPU-bound and thus
will have their priorities lowered.

The recalculation of a task’s dynamic priority occurs when the task has
exhausted its time quantum and is to be moved to the expired array. Thus,
when the two arrays are exchanged, all tasks in the new active array have been
assigned new priorities and corresponding time slices.

Algorithm Evaluation

How do we select a CPU scheduling algorithm for a particular system? As we
saw in Section 5.3, there are many scheduling algorithms, each with its own
parameters. As a result, selecting an algorithm can be difficult.

The first problem is defining the criteria to be used in selecting an algorithm.
As we saw in Section 5.2, criteria are often defined in terms of CPU utilization,
response time, or throughput. To select an algorithm, we must first define
the relative importance of these measures. Our criteria may include several
measures, such as:

® Maximizing CPU utilization under the constraint that the maximum
response time is 1 second

® Maximizing throughput such that turnaround time is (on average) linearly
proportional to total execution time

Once the selection criteria have been defined, we want to evaluate the
algorithms under consideration. We next describe the various evaluation
methods we can use.

5.7.1 Deterministic Modeling

One major class of evaluation methods is analytic evaluation. Analytic
evaluation uses the given algorithm and the system workload to produce a
formula or number that evaluates the performance of the algorithm for that
workload.

One type of analytic evaluation is deterministic modeling. This method
takes a particular predetermined workload and defines the performance of each
algorithm for that workload. For example, assume that we have the workload
shown below. All five processes arrive at time 0, in the order given, with the
length of the CPU burst given in milliseconds:

Process Burst Time

P 10
P, 29
P 3
Py 7

Ps 12
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5.7.2 Queueing Models :

On many systems, the processes that are run vary from day to day, so there
is no static set of processes (or times) to use for deterministic modeling. What
can be determined, however, is the distribution of CPU and 1/0 bursts. These
distributions can be measured and then approximated or simply estimated. The
result is a mathematical formula describing the probability of a particular CPU
burst. Commonly, this distribution is exponential and is described by its mean.
Similarly, we can describe the distribution of times when processes arrive in
the system (the arrival-time distribution). From these two distributions, it is
possible to compute the average throughput, utilization, waiting time, and so
on for most algorithms.

The computer system is described as a network of servers. Each server has
a queue of waiting processes. The CPU is a server with its ready queue, as is
the I/O system with its device queues. Knowing arrival rates and service rates,
we can compute utilization, average queue length, average wait time, and so
on. This area of study is called queueing-network analysis.

As an example, let n be the average queue length (excluding the process
being serviced), let W be the average waiting time in the queue, and let \ be
the average arrival rate for new processes in the queue (such as three processes
per second). We expect that during the time W that a process waits, A x W
new processes will arrive in the queue. If the system is in a steady state, then
the number of processes leaving the queue must be equal to the number of
processes that arrive. Thus,

n=AX W.

This equation, known as Little’s formula, is particularly useful because it is
valid for any scheduling algorithm and arrival distribution.

We can use Little’s formula to compute one of the three variables, if we
know the other two. For example, if we know that 7 processes arrive every
second (on average), and that there are normally 14 processes in the queue,
then we can compute the average waiting time per process as 2 seconds.

Queueing analysis can be useful in comparing scheduling algorithms,
but it also has limitations. At the moment, the classes of algorithms and
distributions that can be handled are fairly limited. The mathematics of
complicated algorithms and distributions can be difficult to work with. Thus,
arrival and service distributions are often defined in mathematically tractable
—but unrealistic—ways. It is also generally necessary to make a number of
independent assumptions, which may not be accurate. As a result of these
difficulties, queueing models are often only approximations of real systems,
and the accuracy of the computed results may be questionable.

5.7.3 Simulations

To get a more accurate evaluation of scheduling algorithms, we can use
simulations. Running simulations involves programming a model of the
computer system. Software data structures represent the major components
of the system. The simulator has a variable representing a clock; as this
variable’s value is increased, the simulator modifies the system state to reflect
the activities of the devices, the processes, and the scheduler. As the simulation
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Figure 5.15 Evaluation of CPU schedulers by simulation.

executes, statistics that indicate algorithm performance are gathered and
printed.

The data to drive the simulation can be generated in several ways. The most
common method uses a random-number generator, which is programmed to
generate processes, CPU burst times, arrivals, departures, and so on, according
to probability distributions. The distributions can be defined mathematically
(uniform, exponential, Poisson) or empirically. If a distribution is to be defined
empirically, measurements of the actual system under study are taken. The
results define the distribution of events in the real system; this distribution can
then be used to drive the simulation.

A distribution-driven simulation may be inaccurate, however, because of
relationships between successive events in the real system. The frequency
distribution indicates only how many instances of each event occur; it does not
indicate anything about the order of their occurrence. To correct this problem,
we can use trace tapes. We create a trace tape by monitoring the real system and
recording the sequence of actual events (Figure 5.15). We then use this sequence
to drive the simulation. Trace tapes provide an excellent way to compare two
algorithms on exactly the same set of real inputs. This method can produce
accurate results for its inputs.

Simulations can be expensive, often requiring hours of computer time. A
more detailed simulation provides more accurate results, but it also requires
more computer time. In addition, trace tapes can require large amounts of
storage space. Finally, the design, coding, and debugging of the simulator can
be a major task.

5.7.4 Implementation

Even a simulation is of limited accuracy. The only completely accurate way
to evaluate a scheduling algorithm is to code it up, put it in the operating
system, and see how it works. This approach puts the actual algorithm in the
real system for evaluation under real operating conditions.
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The major difficulty with this approach is the high cost. The expense is
incurred not only in coding the algorithm and modifying the operating system
to support it (along with its required data structures) but also in the reaction
of the users to a constantly changing operating system. Most users are not
interested in building a better operating system; they merely want to get their
processes executed and use their results. A constantly changing operating
system does not help the users to get their work done.

Another difficulty is that the environment in which the algorithm is used
will change. The environment will change not only in the usual way, as new
programs are written and the types of problems change, but also as a result
of the performance of the scheduler. If short processes are given priority, then
users may break larger processes into sets of smaller processes. If interactive
processes are given priority over noninteractive processes, then users may
switch to interactive use.

For example, researchers designed one system that classified interactive
and noninteractive processes automatically by looking at the amount of
terminal 1/0. If a process did not input or output to the terminal in a 1-second
interval, the process was classified as noninteractive and was moved to a
lower-priority queue. In response to this policy, one programmer modified his
programs to write an arbitrary character to the terminal at regular intervals of
less than 1 second. The system gave his programs a high priority, even though
the terminal output was completely meaningless.

The most flexible scheduling algorithms are those that can be altered
by the system managers or by the users so that they can be tuned for
a specific application or set of applications. For instance, a workstation
that performs high-end graphical applications may have scheduling needs
different from those of a web server or file server. Some operating systems—
particularly several versions of UNIX—allow the systemm manager to fine-tune
the scheduling parameters for a particular system configuration. For example,
Solaris provides the dispadmin command to allow the system administrator
to modify the parameters of the scheduling classes described in Section 5.6.1.

Another approach is to use APIs that modify the priority of a process or
thread. The Java, /POSIX, and /WinAPl/ provide such functions. The downfall
of this approach is that performance tuning a system or application most often
does not result in improved performance in more general situations.

Summary

CPU scheduling is the task of selecting a waiting process from the ready queue
and allocating the CPU to it. The CPU is allocated to the selected process by the
dispatcher.

First-come, first-served (FCFS) scheduling is the simplest scheduling algo-
rithm, but it can cause short processes to wait for very long processes. Shortest-
job-first (SJF) scheduling is provably optimal, providing the shortest average
waiting time. Implementing SJF scheduling is difficult, however, because pre-
dicting the length of the next CPU burst is difficult. The SJF algorithm is a special
case of the general priority scheduling algorithm, which simply allocates the
CPU to the highest-priority process. Both priority and SJF scheduling may suffer
from starvation. Aging is a technique to prevent starvation.



186

Chapter 5 CPU Scheduling

Round-robin (RR) scheduling is more appropriate for a time-shared (inter-
active) system. RR scheduling allocates the CPU to the first process in the ready
queue for g time units, where g is the time quantum. After g time units, if
the process has not relinquished the CPU, it is preempted, and the process is
put at the tail of the ready queue. The major problem is the selection of the
time quantum. If the quantum is too large, RR scheduling degenerates to FCFS
scheduling; if the quantum is too small, scheduling overhead in the form of
context-switch time becomes excessive.

The FCFS algorithm is nonpreemptive; the RR algorithm is preemptive. The
SJF and priority algorithms may be either preemptive or nonpreemptive.

Multilevel queue algorithms allow different algorithms to be used for
different classes of processes. The most common model includes a foreground
interactive queue that uses RR scheduling and a background batch queue that
uses FCFS scheduling. Multilevel feedback queues allow processes to move
from one queue to another.

Many contemporary computer systems support multiple processors and
allow each processor to schedule itself independently. Typically, each processor
maintains its own private queue of processes (or threads), all of which are
available to run. Issues related to multiprocessor scheduling include processor
affinity and load balancing.

Operating systems supporting threads at the kernel level must schedule
threads—not processes—for execution. This is the case with Solaris and
Windows XP. Both of these systems schedule threads using preemptive,
priority-based scheduling algorithms, including support for real-time threads.
The Linux process scheduler uses a priority-based algorithm with real-time
support as well. The scheduling algorithms for these three operating systems
typically favor interactive over batch and CPU-bound processes.

The wide variety of scheduling algorithms demands that we have methods
to select among algorithms. Analytic methods use mathematical analysis to
determine the performance of an algorithm. Simulation methods determine
performance by imitating the scheduling algorithm on a “representative”
sample of processes and computing the resulting performance. However, sim-
ulation can at best provide an approximation of actual system performance;
the only reliable technique for evaluating a scheduling algorithm is to imple-
ment the algorithm on an actual system and monitor its performance in a
“real-world” environment.

Exercises

5.1 Why isitimportant for the scheduler to distinguish 1/0-bound programs
from CPU-bound programs?

5.2 Discuss how the following pairs of scheduling criteria conflict in certain
settings.

a. CPU utilization and response time
b. Average turnaround time and maximum waiting time

c. I/0 device utilization and CPU utilization .
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5.3 Consider the exponential average formula used to predict the length of
the next CPU burst. What are the implications of assigning the following
values to the parameters used by the algorithm?

a. a = 0and 7y = 100 milliseconds
b. a = 0.99 and 1y = 10 milliseconds

5.4 Consider the following set of processes, with the length of the CPU burst
given in milliseconds:

Process Burst Time Priority

P, 10 3
P, 1 1
Py 2 3
Py 1 4
P5 5 2

The processes are assumed to have arrived in the order Py, P, P3, Py, Ps,
all at time 0.

a. Draw four Gantt charts that illustrate the execution of these
processes using the following scheduling algorithms: FCFS, SJF,
nonpreemptive priority (a smaller priority number implies a
higher priority), and RR (quantum = 1).

b. What is the turnaround time of each process for each of the
scheduling algorithms in part a?

c. Whatis the waiting time of each process for each of the scheduling
algorithms in part a?

d. Which of the algorithms in part a results in the minimum average
waiting time (over all processes)?

5.5 Which of the following scheduling algorithms could result in starvation?
a. First-come, first-served
b. Shortest job first
c. Round robin
d. Priority

5.6 Consider a variant of the RR scheduling algorithm in which the entries
in the ready queue are pointers to the PCBs.

a. What would be the effect of putting two pointers to the same
process in the ready queue?

b. What would be two major advantages and two disadvantages of
this scheme?

c. How would you modify the basic RR algorithm to achieve the
same effect without the duplicate pointers?
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5.7

5.8

5.9

5.10

5.11

5.12

Consider a system running ten I/0-bound tasks and one CPU-kound
task. Assume that the 1/0-bound tasks issue an I/0O operation once for
every millisecond of CPU computing and that each I/0 operation takes
10 milliseconds to complete. Also assume that the context-switching
overhead is 0.1 millisecond and that all processes are long-running tasks.
What is the CPU utilization for a round-robin scheduler when:

a. The time quantum is 1 millisecond

b. The time quantum is 10 milliseconds

Consider a system implementing multilevel queue scheduling. What
strategy can a computer user employ to maximize the amount of CPU
time allocated to the user’s process?

Consider a preemptive priority scheduling algorithm based on dynami-
cally changing priorities. Larger priority numbers imply higher priority.
When a process is waiting for the CPU (in the ready queue, but not
running), its priority changes at a rate «; when it is running, its priority
changes at a rate 3. All processes are given a priority of 0 when they
enter the ready queue. The parameters « and {3 can be set to give many
different scheduling algorithms.

a. What is the algorithm that results from 3 > o > 0?

b. What is the algorithm that results froma < B < 0?

Explain the differences in the degree to which the following scheduling
algorithms discriminate in favor of short processes:

a. FCFs
b. RR

c. Multilevel feedback queues

Using the Windows XP scheduling algorithm, what is the numeric
priority of a thread for the following scenarios?

a. A thread in the REALTIME_PRIORITY.CLASS with a relative priority
of HIGHEST

b. A thread in the NORMAL_PRIORITY_CLASS with a relative priority
of NORMAL

c. A thread in the HIGH_PRIORITY.CLASS with a relative priority of
ABOVE NORMAL

Consider the scheduling algorithm in the Solaris operating system for
time-sharing threads.

a. What is the time quantum (in milliseconds) for a thread with
priority 10? With priority 55?

b. Assume that a thread with priority 35 has used its entire time
quantum without blocking. What new priority will the scheduler
assign this thread?
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c. Assume that a thread with priority 35 blocks for 1/0 befere its
time quantum has expired. What new priority will the scheduler
assign this thread?

5.13 The traditional UNIX scheduler enforces an inverse relationship between
priority numbers and priorities: The higher the number, the lower the
priority. The scheduler recalculates process priorities once per second
using the following function:

Priority = (recent CPU usage / 2) + base

where base = 60 and recent CPU usage refers to a value indicating how
often a process has used the CPU since priorities were last recalculated.

Assume that recent CPU usage for process P; is 40, process P; is 18,
and process P; is 10. What will be the new priorities for these three
processes when priorities are recalculated? Based on this information,
does the traditional UNIX scheduler raise or lower the relative priority
of a CPU-bound process?
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A cooperating process is one that can affect or be affected by other processes
executing in the system. Cooperating processes can either directly share a
logical address space (that is, both code and data) or be allowed to share data
only through files or messages. The former case is achieved through the use of
lightweight processes or threads, which we discussed in Chapter 4. Concurrent
access to shared data may result in data inconsistency. In this chapter, we
discuss various mechanisms to ensure the orderly execution of cooperating
processes that share a logical address space, so that data consistency is
maintained.

CHAPTER OBJECTIVES

¢ To introduce the critical-section problem, whose solutions can be used to
ensure the consistency of shared data.

» To present both software and hardware solutions of the critical-section
problem.

¢ To intoduce the concept of atomic transaction and describe mechanisms
to ensure atomicity.

Background

In Chapter 3, we developed a model of a system consisting of cooperating
sequential processes or threads, all running asynchronously and possibly
sharing data. We illustrated this model with the producer-consumer problem,
which is representative of operating systems. Specifically, in Section 3.4.1, we
described how a bounded buffer could be used to enable processes to share
memory.

Let us return to our consideration of the bounded buffer. As we pointed
out, our solution allows at most BUFFER.SIZE — 1 items in the buffer at the same
time. Suppose we want to modify the algorithm to remedy this deficiency. One
possibility is to add an integer variable counter, initialized to 0. counter is
incremented every time we add a new item to the buffer and is decremented

191



192

Chapter 6 Process Synchronization

every time we remove one item from the buffer. The code for the producer
process can be modified as follows:

while (true)
{
/* produce an item in nextProduced */
while (counter == BUFFER_SIZE)
; /* do nothing */
buffer{in] = nextProduced;
in = (in + 1) % BUFFER._SIZE;
countexr++;

}

The code for the consumer process can be modified as follows:

while (true)
{
while (counter == 0)
; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;
/* consume the item in nextConsumed */

)

Although both the producer and consumer routines are correct separately,
they may not function correctly when executed concurrently. As an illustration,
suppose that the value of the variable counter is currently 5 and that the
producer and consumer processes execute the statements “counter++” and
“counter--"" concurrently. Following the execution of these two statements,
the value of the variable counter may be 4, 5, or 6! The only correct result,
though, is counter == 5, which is generated correctly if the producer and
consumer execute separately.

We can show that the value of counter may be incorrect as follows. Note
that the statement “counter++” may be implemented in machine language (on
a typical machine) as

register; = counter
register; = registery + 1
counter =registery

where register is a local CPU register. Similarly, the statement “counter--""is
implemented as follows:

register; = counter
register, = register, — 1
counter =registery

where again register, is a local CPU register. Even though register; and
register, may be the same physical register (an accumulator, say), remember
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that the contents of this register will be saved and restored by the intgrrupt
handler (Section 1.2.3).

The concurrent execution of “counter++” and “counter—-"1is equivalent
to a sequential execution where the lower-level statements presented pre-
viously are interleaved in some arbitrary order (but the order within each
high-level statement is preserved). One such interleaving is

registery =5}
registery = 6}
registery, = 5}
registery = 4}
counter = 6}
counter = 4}

To: producer execute register; = counter
Ti: producer execute  register; = registery + 1
Tr: consumer execute  register, = counter
T5: consumer execute  register, = registery — 1
Ty:  producer execute  counter = registery
Ts: consumer execute  counter =registers

e, b, i, e, i, i,

Notice that we have arrived at the incorrect state “counter == 47, indicating
that four buffers are full, when, in fact, five buffers are full. If we reversed the
order of the statements at T, and Ts, we would arrive at the incorrect state
“counter ==6".

We would arrive at this incorrect state because we allowed both processes
to manipulate the variable counter concurrently. A situation like this, where
several processes access and manipulate the same data concurrently and the
outcome of the execution depends on the particular order in which the access
takes place, is called a race condition. To guard against the race condition
above, we need to ensure that only one process at a time can be manipulating
the variable counter. To make such a guarantee, we require that the processes
be synchronized in some way.

Situations such as the one just described occur frequently in operating
systems as different parts of the system manipulate resources. Clearly, we
want the resulting changes not to interfere with one another. Because of the
importance of this issue, a major portion of this chapter is concerned with
process synchronization and coordination.

The Critical-Section Problem

Consider a system consisting of n processes {Py, P, ..., P,_1}. Each process
has a segment of code, called a critical section, in which the process may
be changing common variables, updating a table, writing a file, and so on.
The important feature of the system is that, when one process is executing in
its critical section, no other process is to be allowed to execute in its critical
section. That is, no two processes are executing in their critical sections at the
same time. The critical-section problem is to design a protocol that the processes
can use to cooperate. Each process must request permission to enter its critical
section. The section of code implementing this request is the entry section. The
critical section may be followed by an exit section. The remaining code is the
remainder section. The general structure of a typical process P; is shown in
Figure 6.1. The entry section and exit section are enclosed in boxes to highlight
these important segments of code.
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do { ’

entry section

critical section

exit section

remainder section
} while (TRUE);

Figure 6.1 General structure of a typical process £.

A solution to the critical-section problem must satisfy the following three
requirements:

1. Mutual exclusion. If process P; is executing in its critical section, then no
other processes can be executing in their critical sections.

2. Progress. If no process is executing in its critical section and some
processes wish to enter their critical sections, then only those processes
that are not executing in their remainder sections can participate in the
decision on which will enter its critical section next, and this selection
cannot be postponed indefinitely.

3. Bounded waiting. There exists a bound, or limit, on the number of times
that other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before that
request is granted.

We assume that each process is executing at a nonzero speed. However, we can
make no assumption concerning the relative speed of the n processes.

At a given point in time, many kernel-mode processes may be active in the
operating system. As a result, the code implementing an operating system
(kernel code) is subject to several possible race conditions. Consider as an
example a kernel data structure that maintains a list of all open files in the
system. This list must be modified when a new file is opened or closed (adding
the file to the list or removing it from the list). If two processes were to open files
simultaneously, the separate updates to this list could result in a race condition.
Other kernel data structures that are prone to possible race conditions include
structures for maintaining memory allocation, for maintaining process lists,
and for interrupt handling. It is up to kernel developers to ensure that the
operating system is free from such race conditions.

Two general approaches are used to handle critical sections in operating
systems: (1) preemptive kernels and (2) nonpreemptive kernels. A preemptive
kernel allows a process to be preempted while it is running in kernel mode.
A nonpreemptive kernel does not allow a process running in kernel mode
to be preempted; a kernel-mode process will run until it exits kernel mode,
blocks, or voluntarily yields control of the CPU. Obviously, a nonpreemptive
kernel is essentially free from race conditions on kernel data structures, as
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only one process is active in the kernel at a time. We cannot say the:same
about nonpreemptive kernels, so they must be carefully designed to ensure
that shared kernel data are free from race conditions. Preemptive kernels are
especially difficult to design for SMP architectures, since in these environments
it is possible for two kernel-mode processes to run simultaneously on different
processors.

Why, then, would anyone favor a preemptive kernel over a nonpreemptive
one? A preemptive kernel is more suitable for real-time programming, as it will
allow a real-time process to preempt a process currently running in the kernel.
Furthermore, a preemptive kernel may be more responsive, since there is less
risk that a kernel-mode process will run for an arbitrarily long period before
relinquishing the processor to waiting processes. Of course, this effect can be
minimized by designing kernel code that does not behave in this way.

Windows XP and Windows 2000 are nonpreemptive kernels, as is the
traditional UNIX kernel. Prior to Linux 2.6, the Linux kernel was nonpreemptive
as well. However, with the release of the 2.6 kernel, Linux changed to the
preemptive model. Several commercial versions of UNIX are preemptive,
including Solaris and IRIX.

Peterson’s Solution

Next, we illustrate a classic software-based solution to the critical-section
problem known as Peterson’s solution. Because of the way modern computer
architectures perform basic machine-language instructions, such as load and
store, there are no guarantees that Peterson’s solution will work correctly
on such architectures. However, we present the solution because it provides
a good algorithmic description of solving the critical-section problem and
illustrates some of the complexities involved in designing software that
addresses the requirements of mutual exclusion, progress, and bounded
waiting requirements.

Peterson’s solution is restricted to two processes that alternate execution
between their critical sections and remainder sections. The processes are
numbered Py and P;. For convenience, when presenting P;, we use P; to
denote the other process; that is, j equals 1 — i.

Peterson’s solution requires two data items to be shared between the two
processes:

int turn;
boolean flagl2];

The variable turn indicates whose turn it is to enter its critical section. That is,
if turn == i, then process P; is allowed to execute in its critical section. The
flag array is used to indicate if a process is ready to enter its critical section.
For example, if f1lag[i] is true, this value indicates that P; is ready to enter
its critical section. With an explanation of these data structures complete, we
are now ready to describe the algorithm shown in Figure 6.2.

To enter the critical section, process P; first sets flag[i] to be true and
then sets turn to the value j, thereby asserting that if the other process wishes
to enter the critical section, it can do so. If both processes try to enter at the
same time, turn will be set to both i and j at roughly the same time. Only
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do { ’

flag[i] = TRUE;
turn = j;
while (flagl[j] && turn == j);

critical section

flag[i] = FALSE;

remainder section
} while (TRUE);
Figure 6.2 The structure of process F; in Peterson’s solution.

one of these assignments will last; the other will occur but will be overwritten
immediately. The eventual value of turn decides which of the two processes
is allowed to enter its critical section first.

We now prove that this solution is correct. We need to show that:

1. Mutual exclusion is preserved.
2. The progress requirement is satisfied.

3. The bounded-waiting requirement is met.

To prove property 1, we note that each P; enters its critical section only
if either flag[j] == false or turn == i. Also note that, if both processes
can be executing in their critical sections at the same time, then flag[0] ==
flagl1] == true. These two observations imply that Py and P; could not have
successfully executed their while statements at about the same time, since the
value of turn canbe either 0 or 1 but cannot be both. Hence, one of the processes
—say P;—must have successfully executed the while statement, whereas P;
had to execute at least one additional statement (“turn == j”). However, since,
at that time, flag[j] == true, and turn == j, and this condition will persist
as long as P; is in its critical section, the result follows: Mutual exclusion is
preserved.

To prove properties 2 and 3, wenote that a process P; can be prevented from
entering the critical section only if it is stuck in the while loop with the condition
flagljl == true and turn == j; this loop is the only one possible. If P; is not
ready to enter the critical section, then flag[j] == false, and P; can enter its
critical section. If P; has set flag[j] to true and is also executing in its while

statement, then either turn == i or turn == j. If turn == i, then P; will enter . -

the critical section. If turn == j, then P; will enter the critical section. However,
once P; exits its critical section, it will reset f1ag[j] to false, allowing P; to
enter its critical section. If P; resets flag[j] to true, it must also set turn to i.
Thus, since P; does not change the value of the variable turn while executing
the while statement, P; will enter the critical section (progress) after at most
one entry by P; (bounded waiting).
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do { »

acquire lock

critical section

remainder section
} while (TRUE);

Figure 6.3 Solution to the critical-section problem using locks.

Synchronization Hardware

We have just described one software-based solution to the critical-section
problem. In general, we can state that any solution to the critical-section
problem requires a simple tool—a lock. Race conditions are prevented by
requiring that critical regions be protected by locks. That is, a process must
acquire a lock before entering a critical section; it releases the lock when it exits
the critical section. This is illustrated in Figure 6.3.

In the following discussions, we explore several more solutions to the
critical-section problem using techniques ranging from hardware to software-
based APIs available to application programmers. All these solutions are based
on the premise of locking; however, as we shall see, the design of such locks
can be quite sophisticated.

Hardware features can make any programming task easier and improve
system efficiency. In this section, we present some simple hardware instructions
that are available on many systems and show how they can be used effectively
in solving the critical-section problem.

The critical-section problem could be solved simply in a uniprocessor envi-
ronment if we could prevent interrupts from occurring while a shared variable
was being modified. In this manner, we could be sure that the current sequence
of instructions would be allowed to execute in order without preemption. No
other instructions would be run, so no unexpected modifications could be
made to the shared variable. This is the approach taken by nonpreemptive
kernels.

Unfortunately, this solution is not as feasible in a multiprocessor environ-
ment. Disabling interrupts on a multiprocessor can be time consuming, as the

boolean TestAndSet (boolean *target) {
boolean rv = *target;
*target = TRUE;
return rv;

}

Figure 6.4 The definition of the TestAndSet () instruction.
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do ;
while (TestAndSetLock({&lock})
; // do nothing

// critical section
lock = FALSE;

// remainder section
}while (TRUE) ;

Figure 6.5 Mutual-exclusion implementation with TestAndSet ().

message is passed to all the processors. This message passing delays entry into
each critical section, and system efficiency decreases. Also, consider the effect
on a system’s clock, if the clock is kept updated by interrupts.

Many modern computer systems therefore provide special hardware
instructions that allow us either to test and modify the content of a word or
to swap the contents of two words atomically—that is, as one uninterruptible
unit. We can use these special instructions to solve the critical-section problem
in a relatively simple manner. Rather than discussing one specific instruction
for one specific machine, we abstract the main concepts behind these types of
instructions.

The TestAndSet () instruction can be defined as shown in Figure 6.4.
The important characteristic is that this instruction is executed atomically.
Thus, if two TestAndSet () instructions are executed simultaneously (each on
a different CPU), they will be executed sequentially in some arbitrary order. If
the machine supports the TestAndSet () instruction, then we can implement
mutual exclusion by declaring a Boolean variable lock, initialized to false.
The structure of process P; is shown in Figure 6.5.

The Swap() instruction, in contrast to the TestAndSet() instruction,
operates on the contents of two words; it is defined as shown in Figure 6.6.
Like the TestAndSet () instruction, it is executed atomically. If the machine
supports the Swap () instruction, then mutual exclusion can be provided as
follows. A global Boolean variable 1ock is declared and is initialized to false.
In addition, each process has a local Boolean variable key. The structure of
process P; is shown in Figure 6.7.

Although these algorithms satisty the mutual-exclusion requirement, they
do not satisfy the bounded-waiting requirement. In Figure 6.8, we present

void Swap (boolean *a, boolean *b) {

boolean temp = *a;
*a = *b;
*ph = temp;

}

Figure 6.6 The definition of the Swap () instruction.
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do { P
key = TRUE;
while (key == TRUE)
Swap (&lock, &key);

// critical section
lock = FALSE;

// remainder section
fwhile (TRUE);

Figure 6.7 Mutual-exclusion implementation with the Swap () instruction.

another algorithm using the TestAndSet () instruction that satisfies all the
critical-section requirements. The common data structures are

boolean waiting(n];
boolean lock;

These data structures are initialized to false. To prove that the mutual-
exclusion requirement is met, we note that process P; can enter its critical
section only if either waiting[i] == false or key == false. The value
of key can become false only if the TestAndSet () is executed. The first
process to execute the TestAndSet () will find key == false; all others must

do {
walting([i] = TRUE;
key = TRUE;

while (waiting[i] && key)
key = TestAndSet (&lock) ;
walting[i] = FALSE;

// critical section

jo= (1 + 1) % n;

while ((j !'= i) && !waitingl[j])
j= (3 + 1) % n;

if (j == 1)
lock = FALSE;

else
waiting[j] = FALSE;

// remainder section
}while (TRUE);

Figure 6.8 Bounded-waiting mutual exciusion with TestAndSet ().
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wait. The variable waiting[i] can become false only if another process
leaves its critical section; only one waiting[i] is set to false, maintaining the
mutual-exclusion requirement.

To prove that the progress requirement is met, we note that the arguments
presented for mutual exclusion also apply here, since a process exiting the
critical section either sets lock to false or sets waiting[j] to false. Both
allow a process that is waiting to enter its critical section to proceed.

To prove that the bounded-waiting requirement is met, we note that, when
a process leaves its critical section, it scans the array waiting in the cyclic
ordering i +1,i+2,..,n— 1,0, ..., 1 — 1). It designates the first process in this
ordering that is in the entry section (waiting[j] == true) as the next one to
enter the critical section. Any process waiting to enter its critical section will
thus do so within n — 1 turns.

Unfortunately for hardware designers, implementing atomic TestAnd-
Set () instructions on multiprocessors is not a trivial task. Such implementa-
tions are discussed in books on computer architecture.

Semaphores

The various hardware-based solutions to the critical-section problem (using
the TestAndSet() and Swap() instructions) presented in Section 6.4 are
complicated for application programmers to use. To overcome this difficulty,
we can use a synchronization tool called a semaphore.

A semaphore S is an integer variable that, apart from initialization, is
accessed only through two standard atomic operations: wait () and signal ().
The wait () operation was originally termed P (from the Dutch proberen, “to
test”); signal () was originally called V (from verhogen, “to increment”). The
definition of wait () is as follows:

walt (S) {
while 8 <=0
; // no-op
S--;

}

The definition of signal () is as follows:

signal (S)
S++;
}

All the modifications to the integer value of the semaphore in the wait ()
and signal () operations must be executed indivisibly. That is, when one . -
process modifies the semaphore value, no other process can simultaneously
modify that same semaphore value. In addition, in the case of wait(8), the
testing of the integer value of S (S < 0), and its possible modification (S--),
must also be executed without interruption. We shall see how these operations
can be implemented in Section 6.5.2; first, let us see how semaphores can be
used.
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6.5.1 Usage »

Operating systems often distinguish between counting and binary semaphores.
The value of a counting semaphore can range over an unrestricted domain.
The value of a binary semaphore can range only between 0 and 1. On some
systems, binary semaphores are known as mutex locks, as they are locks that
provide mutual exclusion.

We can use binary semaphores to deal with the critical-section problem for
multiple processes. The n processes share a semaphore, mutex, initialized to 1.
Each process P; is organized as shown in Figure 6.9.

Counting semaphores can be used to control access to a given resource
consisting of a finite number of instances. The semaphore is initialized to the
number of resources available. Each process that wishes to use a resource
performs a wait() operation on the semaphore (thereby decrementing the
count). When a process releases a resource, it performs a signal () operation
(incrementing the count). When the count for the semaphore goes to 0, all
resources are being used. After that, processes that wish to use a resource will
block until the count becomes greater than 0.

We can also use semaphores to solve various synchronization problems.
For example, consider two concurrently running processes: P; with a statement
S and P, with a statement S. Suppose we require that S, be executed only
after 5 has completed. We can implement this scheme readily by letting P
and P> share a common semaphore synch, initialized to 0, and by inserting the
statements

515
signal (synch) ;

in process P;, and the statements

wait (synch) ;
S’),‘

in process P». Because synch is initialized to 0, P, will execute S, only after P,
has invoked signal (synch), which is after statement S; has been executed.

do {
walting (mutex) ;

// ecritical section
signal (mutex) ;

// remainder section
}while (TRUE);

Figure 6.9 Mutual-exclusion implementation with semaphores.
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6.5.2 Implementation d

The main disadvantage of the semaphore definition given here is that it requires
busy waiting. While a process is in its critical section, any other process that
tries to enter its critical section must loop continuously in the entry code. This
continual looping is clearly a problem in a real multiprogramming system,
where a single CPU is shared among many processes. Busy waiting wastes
CPU cycles that some other process might be able to use productively. This
type of semaphore is also called a spinlock because the process “spins” while
waiting for the lock. (Spinlocks do have an advantage in that no context switch
is required when a process must wait on a lock, and a context switch may
take considerable time. Thus, when locks are expected to be held for short
times, spinlocks are useful; they are often employed on multiprocessor systems
where one thread can “spin” on one processor while another thread performs
its critical section on another processor.)

To overcome the need for busy waiting, we can modify the definition of
the wait () and signal () semaphore operations. When a process executes the
wait () operation and finds that the semaphore value is not positive, it must
wait. However, rather than engaging in busy waiting, the process can block
itself. The block operation places a process into a waiting queue associated
with the semaphore, and the state of the process is switched to the waiting
state. Then control is transferred to the CPU scheduler, which selects another
process to execute.

A process that is blocked, waiting on a semaphore S, should be restarted
when some other process executes a signal () operation. The process is
restarted by a wakeup () operation, which changes the process from the waiting
state to the ready state. The process is then placed in the ready queue. (The
CPU may or may not be switched from the running process to the newly ready
process, depending on the CPU-scheduling algorithm.)

To implement semaphores under this definition, we define a semaphore as
a “C” struct:

typedef struct {

int value;

struct process *list;
} semaphore;

Each semaphore has an integer value and a list of processes 1ist. When
a process must wait on a semaphore, it is added to the list of processes. A
signal () operation removes one process from the list of waiting processes
and awakens that process.

The wait () semaphore operation can now be defined as

wait (semaphore *S) {
S->value-—;
if (S->value < 0) {
add this process to S->1ist;
block();
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The signal () semaphore operation can now be defined as

signal (semaphore *S) {
S->value++;
if (S8->value <= 0) {
remove a process P from 8->1ist;
wakeup (P) ;

The block() operation suspends the process that invokes it. The wakeup (P)
operation resumes the execution of a blocked process P. These two operations
are provided by the operating system as basic system calls.

Note that, although under the classical definition of semaphores with busy
waiting the semaphore value is never negative, this implementation may have
negative semaphore values. If the semaphore value is negative, its magnitude
is the number of processes waiting on that semaphore. This fact results from
switching the order of the decrement and the test in the implementation of the
wait () operation.

The list of waiting processes can be easily implemented by a link field in
each process control block (PCB). Each semaphore contains an integer value
and a pointer to a list of PCBs. One way to add and remove processes from
the list in a way that ensures bounded waiting is to use a FIFO queue, where
the semaphore contains both head and tail pointers to the queue. In general,
however, the list can use any queueing strategy. Correct usage of semaphores
does not depend on a particular queueing strategy for the semaphore lists.

The critical aspect of semaphores is that they be executed atomically. We
must guarantee that no two processes can execute wait() and signal()
operations on the same semaphore at the same time. This is a critical-section
problem; and in a single-processor environment (that is, where only one CPU
exists), we can solve it by simply inhibiting interrupts during the time the
wait () and signal () operations are executing. This scheme works in a single-
processor environment because, once interrupts are inhibited, instructions
from different processes cannot be interleaved. Only the currently running
process executes until interrupts are reenabled and the scheduler can regain
control.

In a multiprocessor environment, interrupts must be disabled on every
processor; otherwise, instructions from different processes (running on differ-
ent processors) may be interleaved in some arbitrary way. Disabling interrupts
on every processor can be a difficult task and furthermore can seriously dimin-
ish performance. Therefore, SMP systems must provide alternative locking
techniques—such as spinlocks-—to ensure that wait() and signal() are
performed atomically.

It is important to admit that we have not completely eliminated busy
waiting with this definition of the wait () and signal() operations. Rather,
we have removed busy waiting from the entry section to the critical sections
of application programs. Furthermore, we have limited busy waiting to the
critical sections of the wait () and signal () operations, and these sections are
short (if properly coded, they should be no more than about ten instructions).
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Thus, the critical section is almost never occupied, and busy waiting occurs
rarely, and then for only a short time. An entirely different situation exists
with application programs whose critical sections may be long (minutes or
even hours) or may almost always be occupied. In such cases, busy waiting is
extremely inefficient.

6.5.3 Deadlocks and Starvation

The implementation of a semaphore with a waiting queue may result in a
situation where two or more processes are waiting indefinitely for an event
that can be caused only by one of the waiting processes. The event in question
is the execution of a signal () operation. When such a state is reached, these
processes are said to be deadlocked.

To illustrate this, we consider a system consisting of two processes, Py and
P1, each accessing two semaphores, S and Q, set to the value 1:

P, P
wait (8); wait(Q);
wait(Q); wait(S);
signél(S); signél(Q);
signal(Q); signal (8);

Suppose that Py executes wait (S) and then P; executes wait (Q). When P,
executes wait (Q), it must wait until P; executes signal (Q). Similarly, when
Py executes wait (8), it must wait until P, executes signal (S). Since these
signal () operations cannot be executed, Py and P, are deadlocked.

We say that a set of processes is in a deadlock state when every process in
the set is waiting for an event that can be caused only by another process in the
set. The events with which we are mainly concerned here are resource acquisition
and release. However, other types of events may result in deadlocks, as we shall
show in Chapter 7. In that chapter, we shall describe various mechanisms for
dealing with the deadlock problem.

Another problem related to deadlocks is indefinite blocking, or starva-
tion, a situation in which processes wait indefinitely within the semaphore.
Indefinite blocking may occur if we add and remove processes from the list
associated with a semaphore in LIFO (last-in, first-out) order.

Classic Problems of Synchronization

In this section, we present a number of synchronization problems as examples
of a large class of concurrency-control problems. These problems are used for
testing nearly every newly proposed synchronization scheme. In our solutions
to the problems, we use semaphores for synchronization.
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do{ F
// produce an item in nextp

walt (empty) ;
walt (mutex) ;

// add nextp to buffer

signal (mutex) ;
signal {(full) ;
}while (TRUE) ;

Figure 6.10 The structure of the producer process.

6.6.1 The Bounded-Buffer Problem

The bounded-buffer problem was introduced in Section 6.1; it is commonly
used to illustrate the power of synchronization primitives. We present here a
general structure of this scheme without committing ourselves to any particular
implementation; we provide a related programming project in the exercises at
the end of the chapter.

We assume that the pool consists of n buffers, each capable of holding
one item. The mutex semaphore provides mutual exclusion for accesses to the
buffer pool and is initialized to the value 1. The empty and full semaphores
count the number of empty and full buffers. The semaphore empty is initialized
to the value n; the semaphore full is initialized to the value 0.

The code for the producer process is shown in Figure 6.10; the code for
the consumer process is shown in Figure 6.11. Note the symmetry between
the producer and the consumer. We can interpret this code as the producer
producing full buffers for the consumer or as the consumer producing empty
buffers for the producer.

do {
wailt (full) ;
walt (mutex) ;

// remove an item from buffer to nextc

signal (mutex) ;
signal (empty) ;

// consume the item in nextc
jwhile (TRUE) ;

Figure 6.11 The structure of the consumer process.
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6.6.2 The Readers-Writers Problem

A database is to be shared among several concurrent processes. Some of these
processes may want only to read the database, whereas others may want to
update (that is, to read and write) the database. We distinguish between these
two types of processes by referring to the former as readers and to the latter
as writers. Obviously, if two readers access the shared data simultaneously, no
adverse affects will result. However, if a writer and some other thread (either
a reader or a writer) access the database simultaneously, chaos may ensue.

To ensure that these difficulties do not arise, we require that the writers
have exclusive access to the shared database. This synchronization problem is
referred to as the readers—twriters problem. Since it was originally stated, it has
been used to test nearly every new synchronization primitive. The readers—
writers problem has several variations, all involving priorities. The simplest
one, referred to as the first readers—writers problem, requires that no reader
will be kept waiting unless a writer has already obtained permission to use
the shared object. In other words, no reader should wait for other readers to
finish simply because a writer is waiting. The second readers—writers problem
requires that, once a writer is ready, that writer performs its write as soon as
possible. In other words, if a writer is waiting to access the object, no new
readers may start reading,.

A solution to either problem may result in starvation. In the first case,
writers may starve; in the second case, readers may starve. For this reason,
other variants of the problem have been proposed. In this section, we present a
solution to the first readers—writers problem. Refer to the bibliographical notes
at the end of the chapter for references describing starvation-free solutions to
the second readers—writers problem.

In the solution to the first readers—writers problem, the reader processes
share the following data structures:

semaphore mutex, Wwrt;
int readcount;

The semaphoresmutex and wrt are initialized to 1; readcount is initialized
to 0. The semaphore wrt is common to both reader and writer processes.
The mutex semaphore is used to ensure mutual exclusion when the variable
readcount is updated. The readcount variable keeps track of how many
processes are currently reading the object. The semaphore wrt functions as a
mutual-exclusion semaphore for the writers. It is also used by the first or last

do {
wait (wrt) ;
// writing is performed

signal (wrt) ;
}while (TRUE) ;

Figure 6.12 The structure of a writer process.
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do { !
wait (mutex) ;
readcount ++;
1f (readcount == 1)
wait (wrt) ;
signal (mutex) ;

// reading is performed

wailt (mutex) ;
readcount--~;
if (readcount == 0)
signal (wrt) ;
signal (mutex) ;
}while (TRUE) ;

Figure 6.13 The structure of a reader process.

reader that enters or exits the critical section. It is not used by readers who
enter or exit while other readers are in their critical sections.

The code for a writer process is shown in Figure 6.12; the code for a reader
process is shown in Figure 6.13. Note that, if a writer is in the critical section
and » readers are waiting, then one reader is queued on wrt, and n — 1 readers
are queued onmutex. Also observe that, when a writer executes signal (wrt),
we may resume the execution of either the waiting readers or a single waiting
writer. The selection is made by the scheduler.

The readers—writers problem and its solutions has been generalized to
provide reader—writer locks on some systems. Acquiring a reader—writer lock
requires specifying the mode of the lock: either read or write access. When a
process only wishes to read shared data, it requests the reader—writer lock
in read mode; a process wishing to modify the shared data must request the
lock in write mode. Multiple processes are permitted to concurrently acquire
a reader—writer lock in read mode; only one process may acquire the lock for
writing as exclusive access is required for writers.

Reader—writer locks are most useful in the following situations:

e Inapplications whereitis easy to identify which processes only read shared
data and which threads only write shared data.

e Inapplications that have more readers than writers. This is because reader-
writer locks generally require more overhead to establish than semaphores
or mutual exclusion locks, and the overhead for setting up a reader—writer
lock is compensated by the increased concurrency of allowing multiple
readers.

6.6.3 The Dining-Philosophers Problem

Consider five philosophers who spend their lives thinking and eating. The
philosophers share a circular table surrounded by five chairs, each belonging
to one philosopher. In the center of the table is a bowl of rice, and the table is laid
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Figure 6.14 The situation of the dining philosophers.

with five single chopsticks (Figure 6.14). When a philosopher thinks, she does
not interact with her colleagues. From time to time, a philosopher gets hungry
and tries to pick up the two chopsticks that are closest to her (the chopsticks
that are between her and her left and right neighbors). A philosopher may pick
up only one chopstick at a time. Obviously, she cannot pick up a chopstick that
is already in the hand of a neighbor. When a hungry philosopher has both her
chopsticks at the same time, she eats without releasing her chopsticks. When
she is finished eating, she puts down both of her chopsticks and starts thinking
again.

The dining-philosophers problem is considered a classic synchronization
problem neither because of its practical importance nor because computer
scientists dislike philosophers but because it is an example of a large class
of concurrency-control problems. It is a simple representation of the need
to allocate several resources among several processes in a deadlock-free and
starvation-free manner.

One simple solution is to represent each chopstick with a semaphore. A
philosopher tries to grab a chopstick by executing a wait () operation on that
semaphore; she releases her chopsticks by executing the signal () operation
on the appropriate semaphores. Thus, the shared data are

semaphore chopstick[5];

where all the elements of chopstick are initialized to 1. The structure of
philosopher i is shown in Figure 6.15.

Although this solution guarantees that no two neighbors are eating
simultaneously, it nevertheless must be rejected because it could create a
deadlock. Suppose that all five philosophers become hungry simultaneously
and each grabs her left chopstick. All the elements of chopstick will now be
equal to 0. When each philosopher tries to grab her right chopstick, she will be
delayed forever.

Several possible remedies to the deadlock problem are listed next. In
Section 6.7, we present a solution to the dining-philosophers problem that
ensures freedom from deadlocks.

e Allow at most four philosophers to be sitting simultaneously at the table.
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do { ’
wait (chopstick([i]);
walt (chopstick[(i+1) % 51);

// eat
signal (chopstick [i]) ;
signal (chopstick [(i+1) % 5]);

// think
}while (TRUE) ;

Figure 6.15 The structure of philosopher .

o Allow a philosopher to pick up her chopsticks only if both chopsticks are
available (to do this she must pick them up in a critical section).

e Use an asymmetric solution; that is, an odd philosopher picks up first her
left chopstick and then her right chopstick, whereas an even philosopher
picks up her right chopstick and then her left chopstick.

Finally, any satisfactory solution to the dining-philosophers problem must
guard against the possibility that one of the philosophers will starve to death.
A deadlock-free solution does not necessarily eliminate the possibility of
starvation.

Monitors

Although semaphores provide a convenient and effective mechanism for
process synchronization, using them incorrectly can result in timing errors
that are difficult to detect, since these errors happen only if some particular
execution sequences take place and these sequences do not always occur.

We have seen an example of such errors in the use of counters in our
solution to the producer-consumer problem (Section 6.1). In that example,
the timing problem happened only rarely, and even then the counter value
appeared to be reasonable—off by only 1. Nevertheless, the solution is
obviously not an acceptable one. It is for this reason that semaphores were
introduced in the first place.

Unfortunately, such timing errors can still occur when semaphores are
used. To illustrate how, we review the semaphore solution to the critical-
section problem. All processes share a semaphore variable mutex, which is
initialized to 1. Each process must execute wait (mutex) before entering the
critical section and signal (mutex) afterward. If this sequence is not observed,
two processes may be in their critical sections simultaneously. Let us examine
the various difficulties that may result. Note that these difficulties will arise
even if a single process is not well behaved. This situation may be caused by an
honest programming error or an uncooperative programmer.
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e Suppose that a process interchanges the order in which the wait (J and
signal () operations on the semaphore mutex are executed, resulting in
the following execution:

signal (mutex) ;
critical section

wait (mutex);

In this situation, several processes may be executing in their critical sections
simultaneously, violating the mutual-exclusion requirement. This error
may be discovered only if several processes are simultaneously active
in their critical sections. Note that this situation may not always be
reproducible.

e Suppose that a process replaces signal (mutex) with wait (mutex). That
is, 1t executes

wait(mutex) ;
critical section
wait (mutex) ;

In this case, a deadlock will occur.

e Suppose that a process omits the wait (mutex), or the signal (mutex), or
both. In this case, either mutual exclusion is violated or a deadlock will
occur.

These examples illustrate that various types of errors can be generated easily
when programmers use semaphores incorrectly to solve the critical-section
problem. Similar problems may arise in the other synchronization models that
we discussed in Section 6.6.

To deal with such errors, researchers have developed high-level language
constructs. In this section, we describe one fundamental high-level synchro-
nization construct—the monitor type.

6.7.1 Usage

A type, or abstract data type, encapsulates private data with public methods
to operate on that data. A monitor type presents a set of programmer-defined
operations that are provided mutual exclusion within the monitor. The monitor
type also contains the declaration of variables whose values define the state
of an instance of that type, along with the bodies of procedures or functions
that operate on those variables. The syntax of a monitor is shown in Figure
6.16. The representation of a monitor type cannot be used directly by the
various processes. Thus, a procedure defined within a monitor can access only
those variables declared locally within the monitor and its formal parameters.
Similarly, the local variables of a monitor can be accessed by only the local
procedures.
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monitor monitor name

{

// shared variable declarations

procedure P1 ( . . . ) {

}

procedure P2 ( . . . ) {

}

proced{lre Pn (. . . ) {

}

initialization code ( . . . ) {

}

Figure 6.16 Syntax of a monitor.

The monitor construct ensures that only one process at a time can be
active within the monitor. Consequently, the programmer does not need
to code this synchronization constraint explicitly (Figure 6.17). However,
the monitor construct, as defined so far, is not sufficiently powerful for
modeling some synchronization schemes. For this purpose, we need to define
additional synchronization mechanisms. These mechanisms are provided by
the condition construct. A programmer who needs to write a tailor-made
synchronization scheme can define one or more variables of type condition:

condition x, y;

The only operations that can be invoked on a condition variable are wait ()
and signal (). The operation

x.wait () ;

means that the process invoking this operation is suspended until another
process invokes

x.signal();

The x.signal () operation resumes exactly one suspended process. If no
process is suspended, then the signal () operation has no effect; that is, the
state of x is the same as if the operation had never been executed (Figure
6.18). Contrast this operation with the signal() operation associated with
semaphores, which always affects the state of the semaphore.
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Figure 6.18 Monitor with condition variables.

code this solution, we need to distinguish among three states in which we may
find a philosopher. For this purpose, we introduce the following data structure:

enum {thinking, hungry, eating} state[5];

Philosopher i can set the variable state[i] = eating only if her two
neighbors are not eating: (state[(i+4) % 5] != eating)and(state[(i+1)
% 5] '= eating).

We also need to declare

condition self([5];

where philosopher i can delay herself when she is hungry but is unable to
obtain the chopsticks she needs.

We are now ina position to describe our solution to the dining-philosophers
problem. The distribution of the chopsticks is controlled by the monitor dp,
whose definition is shown in Figure 6.19. Each philosopher, before starting to
eat, must invoke the operation pickup (). This may result in the suspension of
the philosopher process. After the successful completion of the operation, the
philosopher may eat. Following this, the philosopher invokes the putdown ()
operation. Thus, philosopher i must invoke the operations pickup() and
putdown () in the following sequence:

dp.pickup(i);
eat

dp.putdown (i) ;
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monitor dp

{
enum {THINKING, HUNGRY, EATING}state(5];
condition self[571;

void pickup(int i) {
state[i] = HUNGRY;
test (i) ;
if (state[i] != EATING)
self [1] .wait () ;
}

void putdown(int 1) {
gstate[i] = THINKING;
test{((1i + 4) % 5);
test ((1i + 1) % 5);

)

void test (int 1) {

if ((state((i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(statel[(i + 1) % 5] != EATING)) {
state[1] = EATING;

gelf(i] .signal () ;

)
}

initialization_code () {
for (int i = 0; 1 <« 5; 1++)
state[i] = THINKING;

}

Figure 6.19 A monitor solution to the dining-philosopher problem.

It is easy to show that this solution ensures that no two neighbors are eating
simultaneously and that no deadlocks will occur. We note, however, that it is
possible for a philosopher to starve to death. We do not present a solution to
this problem but rather leave it as an exercise for you.

6.7.3 Implementing a Monitor Using Semaphores

We now consider a possible implementation of the monitor mechanism using
semaphores. For each monitor, a semaphoremutex (initialized to 1) is provided. -
A process must execute wait (mutex) before entering the monitor and must
execute signal (mutex) after leaving the monitor.

Since a signaling process must wait until the resumed process either leaves
or waits, an additional semaphore, next, is introduced, initialized to 0, on
which the signaling processes may suspend themselves. An integer variable
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next._count is also provided to count the number of processes suspended on
- 3
next. Thus, each external procedure F is replaced by

wait (mutex) ;
body of F

if (next_count > 0)
signal (next);
else
signal (mutex) ;

Mutual exclusion within a monitor is ensured.

We can now describe how condition variables are implemented. For each
condition x, we introduce a semaphore x_sem and an integer variable x_count,
both initialized to 0. The operation x.wait () can now be implemented as

X_count++;
if (next_count > 0)
signal (next) ;
else
signal (mutex) ;
wait (x_sem);
x_count—--;

The operation x.signal () can be implemented as

if (x_count > 0) {
next_count++;
signal (x_sem);
wait(next);
next count--;

}

This implementation is applicable to the definitions of monitors given by
both Hoare and Brinch-Hansen. In some cases, however, the generality of the
implementation is unnecessary, and a significant improvement in efficiency is
possible. We leave this problem to you in Exercise 6.17.

6.7.4 Resuming Processes Within a Monitor

We turn now to the subject of process-resumption order within a monitor. If
several processes are suspended on condition x, and an x. signal () operation
is executed by some process, then how do we determine which of the
suspended processes should be resumed next? One simple solution is touse an
FCFS ordering, so that the process waiting the longest is resumed first. In many
circumstances, however, such a simple scheduling scheme is not adequate. For
this purpose, the conditional-wait construct can be used; it has the form

x.wait(c);
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monitor ResourcelAllocator
boolean busy;
condition x;

void acquire (int time)
if (busy)
x.walt (time) ;
busy = TRUE;

}

void release()
busy = FALSE;
X.signal () ;

)

initialization.code() {
busy = FALSE;

}

Figure 6.20 A monitor to allocate a single resource.

where ¢ is an integer expression that is evaluated when the wait () operation
is executed. The value of ¢, which is called a priority number, is then stored
with the name of the process that is suspended. When x. signal () is executed,
the process with the smallest associated priority number is resumed next.

To illustrate this new mechanism, we consider the ResourceAllocator
monitor shown in Figure 6.20, which controls the allocation of a single resource
among competing processes. Each process, when requesting an allocation
of this resource, specifies the maximum time it plans to use the resource.
The monitor allocates the resource to the process that has the shortest time-
allocation request. A process that needs to access the resource in question must
observe the following sequence:

R.acquire(t);
access the resource;

R.release();

where R is an instance of type ResourceAllocator.

Unfortunately, the monitor concept cannot guarantee that the preceding
access sequence will be observed. In particular, the following problems can
occur:

® A process might access a resource without first gaining access permission
to the resource.

® A process might never release a resource once it has been granted access
to the resource.
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® A process might attempt to release a resource that it never requested.

® A process might request the same resource twice (without first releasing
the resource).

The same difficulties are encountered with the use of semaphores, and
these difficulties are similar in nature to those that encouraged us to develop
the monitor constructs in the first place. Previously, we had to worry about
the correct use of semaphores. Now, we have to worry about the correct use of
higher-level programmer-defined operations, with which the compiler can no
longer assist us.

One possible solution to the current problem is to include the resource-
access operations within the ResourceAllocator monitor. However, using
this solution will mean that scheduling is done according to the built-in
monitor-scheduling algorithm rather than the one we have coded.

To ensure that the processes observe the appropriate sequences, we must
inspect all the programs that make use of the ResourceAllocator monitor
and its managed resource. We must check two conditions to establish the
correctness of this system. First, user processes must always make their calls
on the monitor in a correct sequence. Second, we must be sure that an
uncooperative process does not simply ignore the mutual-exclusion gateway
provided by the monitor and try to access the shared resource directly, without
using the access protocols. Only if these two conditions can be ensured can we
guarantee that no time-dependent errors will occur and that the scheduling
algorithm will not be defeated.

Although this inspection may be possible for a small, static system, it is not
reasonable for a large system or a dynamic system. This access-control problem
can be solved only by additional mechanisms that will be described in Chapter
14.

Many programming languages have incorporated the idea of the monitor
as described in this section, including Concurrent Pascal, Mesa, C# (pro-
nounced C-sharp), and Java. Other languages—such as Erlang —provide some
type of concurrency support using a similar mechanism.

Synchronization Examples

We next describe the synchronization mechanisms provided by the Solaris,
Windows XP, and Linux operating systems, as well as the Pthreads APL. We
have chosen these three systems because they provide good examples of
different approaches for synchronizing the kernel, and we have included the
Pthreads API because it is widely used for thread creation and synchronization
by developers on UNIX and Linux systems. As you will see in this section, the
synchronization methods available in these differing systems vary in subtle
and significant ways.

6.8.1 Synchronization in Solaris

To control access to critical sections, Solaris provides adaptive mutexes, condi-
tion variables, semaphores, reader—writer locks, and turnstiles. Solaris imple-
ments semaphores and condition variables essentially as they are presented
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in Sections 6.5 and 6.7. In this section, we describe adaptive mutexes, reader—
writer locks, and turnstiles.

An adaptive mutex protects access to every critical data item. On a
multiprocessor system, an adaptive mutex starts as a standard semaphore
implemented as a spinlock. If the data are locked and therefore already in use,
the adaptive mutex does one of two things. If the lock is held by a thread that

is currently running on another CPU, the thread spins while waiting for the

lock to become available, because the thread holding the lock is likely to finish
soon. If the thread holding the lock is not currently in run state, the thread
blocks, going to sleep until it is awakened by the release of the lock. It is put
to sleep so that it will not spin while waiting, since the lock will not be freed
very soon. A lock held by a sleeping thread is likely to be in this category. On
a single-processor system, the thread holding the lock is never running if the
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lock is being tested by another thread, because only one thread can run at a
time. Therefore, on this type of system, threads always sleep rather than spin
if they encounter a lock.

Solaris uses the adaptive-mutex method to protect only data that are
accessed by short code segments. That is, a mutex is used if a lock will be
held for less than a few hundred instructions. If the code segment is longer
than that, spin waiting will be exceedingly inefficient. For these longer code
segments, condition variables and semaphores are used. If the desired lock is
already held, the thread issues a wait and sleeps. When a thread frees the lock, it
issues a signal to the next sleeping thread in the queue. The extra cost of putting
a thread to sleep and waking it, and of the associated context switches, is less
than the cost of wasting several hundred instructions waiting in a spinlock.

Reader—writer locks are used to protect data that are accessed frequently
but are usually accessed in a read-only manner. In these circumstances,
reader—writer locks are more efficient than semaphores, because multiple
threads can read data concurrently, whereas semaphores always serialize access
to the data. Reader—writer locks are relatively expensive to implement, so again
they are used on only long sections of code.

Solaris uses turnstiles to order the list of threads waiting to acquire either
an adaptive mutex or a reader—writer lock. A turnstile is a queue structure
containing threads blocked on a lock. For example, if one thread currently
owns the lock for a synchronized object, all other threads trying to acquire the
lock will block and enter the turnstile for that lock. When the lock is released,
the kernel selects a thread from the turnstile as the next owner of the lock.
Each synchronized object with at least one thread blocked on the object’s lock
requires a separate turnstile. However, rather than associating a turnstile with
each synchronized object, Solaris gives each kernel thread its own turnstile.
Because a thread can be blocked only on one object at a time, this is more
efficient than having a turnstile per object.

The turnstile for the first thread to block on a synchronized object becomes
the turnstile for the object itself. Subsequent threads blocking on the lock will
be added to this turnstile. When the initial thread ultimately releases the lock,
it gains a new turnstile from a list of free turnstiles maintained by the kernel. To
prevent a priority inversion, turnstiles are organized according to a priority-
inheritance protocol (Section 19.5). This means that if a lower-priority thread
currently holds a lock that a higher-priority thread is blocked on, the thread
with the lower priority will temporarily inherit the priority of the higher-
priority thread. Upon releasing the lock, the thread will revert to its original
priority.

Note that the locking mechanisms used by the kernel are implemented
for user-level threads as well, so the same types of locks are available inside
and outside the kernel. A crucial implementation difference is the priority-
inheritance protocol. Kernel-locking routines adhere to the kernel priority-
inheritance methods used by the scheduler, as described in Section 19.5;
user-level thread-locking mechanisms do not provide this functionality.

To optimize Solaris performance, developers have refined and fine-tuned
the locking methods. Because locks are used frequently and typically are used
for crucial kernel functions, tuning their implementation and use can produce
great performance gains.
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6.8.2 Synchronization in Windows XP 2

The Windows XP operating system is a multithreaded kernel that provides
support for real-time applications and multiple processors. When the Windows
XP kernel accesses a global resource on a uniprocessor system, it temporarily
masks interrupts for all interrupt handlers that may also access the global
resource. On a multiprocessor system, Windows XP protects access to global
resources using spinlocks. Just as in Solaris, the kernel uses spinlocks only to
protect short code segments. Furthermore, for reasons of efficiency, the kernel
ensures that a thread will never be preempted while holding a spinlock.

For thread synchronization outside the kernel, Windows XP provides
dispatcher objects. Using a dispatcher object, threads synchronize according
to several different mechanisms, including mutexes, semaphores, events, and
timers. The system protects shared data by requiring a thread to gain ownership
of a mutex to access the data and to release ownership when it is finished.
Semaphores behave as described in Section 6.5. Events are similar to condition
variables; that is, they may notify a waiting thread when a desired condition
occurs. Finally, timers are used to notify one (or more than one) thread that a
specified amount of time has expired.

Dispatcher objects may be in either a signaled state or a nonsignaled state.
A signaled state indicates that an object is available and a thread will not block
when acquiring the object. A nonsignaled state indicates that an object is not
available and a thread will block when attempting to acquire the object. We
illustrate the state transitions of a mutex lock dispatcher object in Figure 6.21.

A relationship exists between the state of a dispatcher object and the state
of a thread. When a thread blocks on a nonsignaled dispatcher object, its state
changes from ready to waiting, and the thread is placed in a waiting queue
for that object. When the state for the dispatcher object moves to signaled,
the kernel checks whether any threads are waiting on the object. If so, the
kernel moves one thread—or possibly more threads—from the waiting state
to the ready state, where they can resume executing. The number of threads the
kernel selects from the waiting queue depends on the type of dispatcher object
it is waiting on. The kernel will select only one thread from the waiting queue
for a mutex, since a mutex object may be “owned” by only a single thread. For
an event object, the kernel will select all threads that are waiting for the event.

We can use a mutex lock as an illustration of dispatcher objects and
thread states. If a thread tries to acquire a mutex dispatcher object that is in a
nonsignaled state, that thread will be suspended and placed in a waiting queue
for the mutex object. When the mutex moves to the signaled state (because
another thread has released the lock on the mutex), the thread waiting at the

owner thread releases mutex lock

thread acquires mutex lock

Figure 6.21 Mutex dispatcher object.
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front of the queue will be moved from the waiting state to the ready state and
will acquire the mutex lock. ’

We provide a programming project at the end of this chapter that uses
mutex locks and semaphores in the Win32 APL

6.8.3 Synchronization in Linux

Prior to version 2.6, Linux was a nonpreemptive kernel, meaning that a process
running in kernel mode could not be preempted—even if a higher-priority
process became available to run. Now, however, the Linux kernel is fully
preemptive, so a task can be preempted when it is running in the kernel.

The Linux kernel provides spinlocks and semaphores (as well as reader—
writer versions of these two locks) for locking in the kernel. On SMP machines,
the fundamental locking mechanism is a spinlock, and the kernel is designed so
that the spinlock is held only for short durations. On single-processor machines,
spinlocks are inappropriate for use and are replaced by enabling and disabling
kernel preemption. That is, on single-processor machines, rather than holding
a spinlock, the kernel disables kernel preemption; and rather than releasing
the spinlock, it enables kernel preemption. This is summarized below:

single processor - -{ multiple processors

Linux uses an interesting approach to disable and enable kernel preemp-
tion. It provides two simple system calls—preempt.disable() and pre-
empt_enable () —for disabling and enabling kernel preemption. In addition,
however, the kernel is not preemptible if a kernel-mode task is holding a lock.
To enforce this, each task in the system has a thread-inf o structure containing
a counter, preempt_count, to indicate the number of locks being held by the
task. When alock isacquired, preempt _count is incremented. It is decremented
when a lock is released. If the value of preempt_count for the task currently
running is greater than zero, it is not safe to preempt the kernel, as this task
currently holds a lock. If the count is zero, the kernel can safely be interrupted
(assuming there are no outstanding calls to preempt_disable()).

Spinlocks—along with enabling and disabling kernel preemption—are
used in the kernel only when a lock (or disabling kernel preemption) is held
for a short duration. When a lock must be held for a longer period, semaphores
are appropriate for use.

6.8.4 Synchronization in Pthreads

The Pthreads API provides mutex locks, condition variables, and read—write
locks for thread synchronization. This API is available for programmers and
is not part of any particular kernel. Mutex locks represent the fundamental
synchronization technique used with Pthreads. A mutex lock is used to protect
critical sections of code—that is, a thread acquires the lock before entering
a critical section and releases it upon exiting the critical section. Condition
variables in Pthreads behave much as described in Section 6.7. Read-write
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locks behave similarly to the locking mechanism described in Section, 6.6.2.
Many systems that implement Pthreads also provide semaphores, although
they are not part of the Pthreads standard and instead belong to the POSIX SEM
extension. Other extensions to the Pthreads APl include spinlocks, although not
all extensions are considered portable from one implementation to another. We
provide a programming project at the end of this chapter that uses Pthreads
mutex locks and semaphores.

Atomic Transactions

The mutual exclusion of critical sections ensures that the critical sections are
executed atomically. That is, if two critical sections are executed concurrently,
the result is equivalent to their sequential execution in some unknown order.
Although this property is useful in many application domains, in many cases
we would like to make sure that a critical section forms a single logical unit
of work that either is performed in its entirety or is not performed at all. An
example is funds transfer, in which one account is debited and another is
credited. Clearly, it is essential for data consistency either that both the credit
and debit occur or that neither occur.

Consistency of data, along with storage and retrieval of data, is a concern
often associated with database systems. Recently, there has been an upsurge of
interest in using database-systems techniques in operating systems. Operating
systems can be viewed as manipulators of data; as such, they can benefit from
the advanced techniques and models available from database research. For
instance, many of the ad hoc techniques used in operating systems to manage
files could be more flexible and powerful if more formal database methods
were used in their place. In Sections 6.9.2 to 6.9.4, we describe some of these
database techniques and explain how they can be used by operating systems.
First, however, we deal with the general issue of transaction atomicity. It is this
property that the database techniques are meant to address.

6.9.1 System Model

A collection of instructions (or operations) that performs a single logical
function is called a transaction. A major issue in processing transactions is the
preservation of atomicity despite the possibility of failures within the computer
system.

We can think of a transaction as a program unit that accesses and perhaps
updates various data items that reside on a disk within some files. From our
point of view, such a transaction is simply a sequence of read and write
operations terminated by either a commit operation or an abort operation.
A commit operation signifies that the transaction has terminated its execution
successfully, whereas an abort operation signifies that the transaction has

ended its normal execution due to some logical error or a system failure.

If a terminated transaction has completed its execution successfully, it is
committed; otherwise, it is aborted.

Since an aborted transaction may already have modified the data that it
has accessed, the state of these data may not be the same as it would have
been if the transaction had executed atomically. So that atomicity is ensured,
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an aborted transaction must have no effect on the state of the data that it has
already modified. Thus, the state of the data accessed by an aborted transaction
must be restored to what it was just before the transaction started executing. We
say that such a transaction has been rolled back. It is part of the responsibility
of the system to ensure this property.

To determine how the system should ensure atomicity, we need first to
identify the properties of devices used for storing the various data accessed
by the transactions. Various types of storage media are distinguished by their
relative speed, capacity, and resilience to failure.

e Volatile storage. Information residing in volatile storage does not usually
survive system crashes. Examples of such storage are main and cache
memory. Access to volatile storage is extremely fast, both because of the
speed of the memory access itself and because it is possible to access
directly any data item in volatile storage.

e Nonvolatile storage. Information residing in nonvolatile storage usually
survives system crashes. Examples of media for such storage are disks and
magnetic tapes. Disks are more reliable than main memory but less reliable
than magnetic tapes. Both disks and tapes, however, are subject to failure,
which may result in loss of information. Currently, nonvolatile storage is
slower than volatile storage by several orders of magnitude, because disk
and tape devices are electromechanical and require physical motion to
access data.

® Stable storage. Information residing in stable storage is never lost (never
should be taken with a grain of salt, since theoretically such absolutes
cannotbe guaranteed). Toimplementan approximation of such storage, we
need to replicate information in several nonvolatile storage caches (usually
disk) with independent failure modes and to update the information in a
controlled manner (Section 12.8).

Here, we are concerned only with ensuring transaction atomicity in an
environment where failures result in the loss of information on volatile storage.

6.9.2 Log-Based Recovery

One way to ensure atomicity is to record, on stable storage, information
describing all the modifications made by the transaction to the various data it
accesses. The most widely used method for achieving this form of recording
is write-ahead logging. Here, the system maintains, on stable storage, a data
structure called the log. Each log record describes a single operation of a
transaction write and has the following fields:

e Transaction name. The unique name of the transaction that performed the,
write operation

® Data item name. The unique name of the data item written

e Old value. The value of the data item prior to the write operation

e New value. The value that the data item will have after the write
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Other special log records exist to record significant events during transac-
tion processing, such as the start of a transaction and the commit or abort of a
transaction.

Before a transaction T; starts its execution, the record < T; starts> is
written to the log. During its execution, any write operation by T; is preceded
by the writing of the appropriate new record to the log. When T; commits, the
record < T; commits> is written to the log.

Because the information in the log is used in reconstructing the state of the
data items accessed by the various transactions, we cannot allow the actual
update to a data item to take place before the corresponding log record is
written out to stable storage. We therefore require that, prior to execution of a
write(X) operation, the log records corresponding to X be written onto stable
storage.

Note the performance penalty inherent in this system. Two physical writes
are required for every logical write requested. Also, more storage is needed,
both for the data themselves and for the log recording the changes. In cases
where the data are extremely important and fast failure recovery is necessary,
the price is worth the functionality.

Using the log, the system can handle any failure that does not result in the
loss of information on nonvolatile storage. The recovery algorithm uses two
procedures:

® undo(7;), which restores the value of all data updated by transaction T; to
the old values

® redo(T;), which sets the value of all data updated by transaction T; to the
new values

The set of data updated by T; and their respective old and new values can be
found in the log.

The undo and redo operations must be idempotent (that is, multiple
executions must have the same result as does one execution) to guarantee
correct behavior, even if a failure occurs during the recovery process.

If a transaction T; aborts, then we can restore the state of the data that
it has updated by simply executing undo(T;). If a system failure occurs, we
restore the state of all updated data by consulting the log to determine which
transactions need to be redone and which need to be undone. This classification
of transactions is accomplished as follows:

® Transaction T; needs to be undone if the log contains the < T; starts>
record but does not contain the < T; commits> record.

® Transaction T; needs to be redone if the log contains both the < T; starts>
and the < T; commits=> records.

6.9.3 Checkpoints

When a system failure occurs, we must consult the log to determine those
transactions that need to be redone and those that need to be undone. In
principle, we need to search the entire log to make these determinations. There
are two major drawbacks to this approach:
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1. The searching process is time consuming. .

2. Most of the transactions that, according to our algorithm, need to be
redone have already actually updated the data that the log says they
need to modify. Although redoing the data modifications will cause no
harm (due to idempotency), it will nevertheless cause recovery to take
longer.

To reduce these types of overhead, we introduce the concept of check-
points. During execution, the system maintains the write-ahead log. In addi-
tion, the system periodically performs checkpoints that require the following
sequence of actions to take place:

1. Output all log records currently residing in volatile storage (usually main
memory) onto stable storage.

2. Output all modified data residing in volatile storage to the stable storage.

3. Output a log record <checkpoint:> onto stable storage.

The presence of a <checkpoint> record in the log allows the system
to streamline its recovery procedure. Consider a transaction T; that committed
prior to the checkpoint. The < T; commits> record appears in the log before the
<checkpoint> record. Any modifications made by T; must have been written
to stable storage either prior to the checkpoint or as part of the checkpoint
itself. Thus, at recovery time, there is no need to perform a redo operation on
Ti.

This observation allows us to refine our previous recovery algorithm. After
a failure has occurred, the recovery routine examines the log to determine
the most recent transaction T; that started executing before the most recent
checkpoint took place. It finds such a transaction by searching the log backward
to find the first <checkpoint> record, and then finding the subsequent
< T; start> record.

Once transaction T; has been identified, the redo and undo operations need
be applied only to transaction T; and all transactions T; that started executing
after transaction T;. We’ll call these transactions set T. The remainder of the log
can thus be ignored. The recovery operations that are required are as follows:

® For all transactions Ty in T such that the record < T commits:>> appears in
the log, execute redo(Tj).

e For all transactions T; in T that have no < T, commits> record in the log,
execute undo(T;).

6.9.4 Concurrent Atomic Transactions

We have been considering an environment in which only one transaction can
be executing at a time. We now turn to the case where multiple transactions
are active simultaneously. Because each transaction is atomic, the concurrent
execution of transactions must be equivalent to the case where these trans-
actions are executed serially in some arbitrary order. This property, called
serializability, can be maintained by simply executing each transaction within
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e Shared. If a transaction T; has obtained a shared-mode lock (denofed by
S) on data item Q, then T; can read this item but cannot write Q.

e Exclusive. If a transaction T; has obtained an exclusive-mode lock (denoted
by X) on data item Q, then T; can both read and write Q.

We require that every transaction request a lock in an appropriate mode on
data item Q, depending on the type of operations it will perform on Q.

To access data item Q, transaction T; must first lock Q in the appropriate
mode. If Q is not currently locked, then the lock is granted, and T; can now
access it. However, if the data item Q is currently locked by some other
transaction, then T; may have to wait. More specifically, suppose that T; requests
an exclusive lock on Q. In this case, T; must wait until the lock on Q is released.
If T; requests a shared lock on Q, then T; must wait if Q is locked in exclusive
mode. Otherwise, it can obtain the lock and access Q. Notice that this scheme
is quite similar to the readers—writers algorithm discussed in Section 6.6.2.

A transaction may unlock a data item that it locked at an earlier point.
It must, however, hold a lock on a data item as long as it accesses that item.
Moreover, it is not always desirable for a transaction to unlock a data item
immediately after its last access of that data item, because serializability may
not be ensured.

One protocol that ensures serializability is the two-phase locking protocol.
This protocol requires that each transaction issue lock and unlock requests in
two phases:

e Growing phase. A transaction may obtain locks but may not release any
lock.

e Shrinking phase. A transaction may release locks but may not obtain any
new locks.

Initially, a transaction is in the growing phase. The transaction acquires
locks as needed. Once the transaction releases a lock, it enters the shrinking
phase, and no more lock requests can be issued.

The two-phase locking protocol ensures conflict serializability (Exercise
6.25). It does not, however, ensure freedom from deadlock. In addition, it
is possible that, for a given set of transactions, there are conflict-serializable
schedules that cannot be obtained by use of the two-phase locking protocol.
However, to improve performance over two-phase locking, we need either to
have additional information about the transactions or to impose some structure
or ordering on the set of data.

6.9.4.3 Timestamp-Based Protocols

In the locking protocols described above, the order followed by pairs of "
conflicting transactions is determined at execution time by the first lock that
both request and that involves incompatible modes. Another method for
determining the serializability order is to select an order in advance. The most
common method for doing so is to use a timestamp ordering scheme.

With each transaction T; in the system, we associate a unique fixed
timestamp, denoted by TS(T;). This timestamp is assigned by the system
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before the transaction T; starts execution. If a transaction T; has been asgigned
timestamp TS(T;), and later a new transaction T; enters the system, then TS(T;)
< TS(T}). There are two simple methods for implementing this scheme:

e Use the value of the system clock as the timestamp; that is, a transaction’s
timestamp is equal to the value of the clock when the transaction enters the
system. This method will not work for transactions that occur on separate
systems or for processors that do not share a clock.

e Use a logical counter as the timestamp; that is, a transaction’s timestamp
is equal to the value of the counter when the transaction enters the system.
The counter is incremented after a new timestamp is assigned.

The timestamps of the transactions determine the serializability order.
Thus, if TS(T;) < TS(T;), then the system must ensure that the produced
schedule is equivalent to a serial schedule in which transaction T; appears
before transaction Tj;.

To implement this scheme, we associate with each data item Q two
timestamp values:

o W-timestamp((J) denotes the largest timestamp of any transaction that
successfully executed write(Q).

e R-timestamp(Q) denotes the largest timestamp of any transaction that
successfully executed read(Q).

These timestamps are updated whenever a new read(Q) or write(Q)) instruc-
tion is executed.

The timestamp-ordering protocol ensures that any conflicting read and
write operations are executed in timestamp order. This protocol operates as
follows:

e Suppose that transaction T; issues read(Q):

o If TS(T;) < W-timestamp(), then T; needs to read a value of Q that was

already overwritten. Hence, the read operation is rejected, and T; is
rolled back.

o If TS(T;) = W-timestamp(Q)), then the read operation is executed, and
R-timestamp(Q) is set to the maximum of R-timestamp(Q)) and TS(T;).

® Suppose that transaction T; issues write(Q):

o If TS(T;) < R-timestamp(Q), then the value of Q that T; is producing
was needed previously and T; assumed that this value would never be
produced. Hence, the write operation is rejected, and T; is rolled back._’ _

o If TS(T;) < W-timestamp(Q), then T; is attempting to write an obsolete
value of Q. Hence, this write operation is rejected, and T; is rolled back.

o Otherwise, the write operation is executed.

A transaction T; that is rolled back as a result of the issuing of either a read or
write operation is assigned a new timestamp and is restarted.
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A transaction is a program unit that must be executed atomically; that
is, either all the operations associated with it are executed to completion, or
none are performed. To ensure atomicity despite system failure, we can use a
write-ahead log. All updates are recorded on the log, which is kept in stable
storage. If a system crash occurs, the information in the log is used in restoring
the state of the updated data items, which is accomplished by use of the undo
and redo operations. To reduce the overhead in searching the log after a system
failure has occurred, we can use a checkpoint scheme.

To ensure serializability when the execution of several transactions over-
laps, we must use a concurrency-control scheme. Various concurrency-control
schemes ensure serializability by delaying an operation or aborting the trans-
action that issued the operation. The most common ones are locking protocols
and timestamp ordering schemes.

Exercises

6.1 The first known correct software solution to the critical-section problem
for two processes was developed by Dekker. The two processes, Py and
Py, share the following variables:

boolean flag[2]; /* initially false */
int turn;

The structure of process P; (i == 0 or 1) is shown in Figure 6.25; the other
process is P; (j == 1 or 0). Prove that the algorithm satisfies all three
requirements for the critical-section problem.

do {
flagl[il = TRUE;

while (flag(j]) {

if (turn == j) {
flaglil = false;
while (turn == J)

; // do nothing
flag([i] = TRUE;
}

// critical section

turn = j;
flag[i] = FALSE;

// remainder section
}while (TRUE);

Figure 6.25 The structure of process P in Dekker’s algorithm.
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do {
while (TRUE) {
flag[i] = want.in;
j = turn;

while (§ '= i) {
if (flag(jl != idle) {
J = turn;
else
jo= (3 + 1) % n;

}

flag[i] = in_cs;
j = 0;

while ( (j <« n) && (j == 1 || flaglj] != incs) )

J++;

if ( (§j »= n) && (turn == i || flaglturn] == idle) )
break;

// critical section
i = (turn + 1) % n;

while (flag(j] == idle)
jo= (i + 1) % n;

turn = j;
flag(i] = idle;

// remainder section
}while (TRUE) ;

Figure 6.26 The structure of process P, in Eisenberg and McGuire's algorithm.

6.2 The first known correct software solution to the critical-section problem
for n processes with a lower bound on waiting of n — 1 turns was
presented by Eisenberg and McGuire. The processes share the following
variables:

enum pstate {idle, want in, in cs};
pstate flag[n];
int turn;

All the elements of flag are initially idle; the initial value of turn is
immaterial (between 0 and n-1). The structure of process P; is shown in
Figure 6.26. Prove that the algorithm satisfies all three requirements for
the critical-section problem.
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What is the meaning of the term busy waiting? What other kinds of
waiting are there in an operating system? Can busy waiting be avoided
altogether? Explain your answer.

Explain why spinlocks are not appropriate for single-processor systems
yet are often used in multiprocessor systems.

Explain why implementing synchronization primitives by disabling
interrupts is not appropriate in a single-processor system if the syn-
chronization primitives are to be used in user-level programs.

Explain why interrupts are not appropriate for implementing synchro-
nization primitives in multiprocessor systems.

Describe how the Swap() instruction can be used to provide mutual
exclusion that satisfies the bounded-waiting requirement.

Servers can be designed to limit the number of open connections. For
example, a server may wish to have only N socket connections at any
point in time. As soon as N connections are made, the server will
not accept another incoming connection until an existing connection
is released. Explain how semaphores can be used by a server to limit the
number of concurrent connections.

Show that, if the wait () and signal() semaphore operations are not
executed atomically, then mutual exclusion may be violated.

Show how to implement the wait () and signal() semaphore opera-
tions in multiprocessor environments using the TestAndSet () instruc-
tion. The solution should exhibit minimal busy waiting.

The Sleeping-Barber Problem. A barbershop consists of a waiting room
with 1 chairs and a barber room with one barber chair. If there are no
customers to be served, the barber goes to sleep. If a customer enters
the barbershop and all chairs are occupied, then the customer leaves the
shop. If the barber is busy but chairs are available, then the customer sits
in one of the free chairs. If the barber is asleep, the customer wakes up
the barber. Write a program to coordinate the barber and the customers.

Demonstrate that monitors and semaphores are equivalent insofar as
they can be used to implement the same types of synchronization
problems.

Write a bounded-buffer monitor in which the buffers (portions) are
embedded within the monitor itself.

The strict mutual exclusion within a monitor makes the bounded-buffer
monitor of Exercise 6.13 mainly suitable for small portions.

a. Explain why this is true.
b. Design a new scheme that is suitable for larger portions.
Discuss the tradeoff between fairness and throughput of operations

in the readers—writers problem. Propose a method for solving the
readers—writers problem without causing starvation.
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6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25
6.26

How does the signal () operation associated with monitors differ from
the corresponding operation defined for semaphores?

Suppose the signal () statement can appear only as the last statement
in a monitor procedure. Suggest how the implementation described in
Section 6.7 can be simplified.

Consider a system consisting of processes Py, P, ..., P, each of which has
a unique priority number. Write a monitor that allocates three identical
line printers to these processes, using the priority numbers for deciding
the order of allocation.

A file is to be shared among different processes, each of which has
a unique number. The file can be accessed simultaneously by several
processes, subject to the following constraint: The sum of all unique
numbers associated with all the processes currently accessing the file
must be less than n. Write a monitor to coordinate access to the file.

When a signal is performed on a condition inside a monitor, the signaling
process can either continue its execution or transfer control to the process
that is signaled. How would the solution to the preceding exercise differ
with the two different ways in which signaling can be performed?

Suppose we replace the wait() and signal() operations of moni-
tors with a single construct await(B), where B is a general Boolean
expression that causes the process executing it to wait until B becomes
true.
a. Write a monitor using this scheme to implement the readers~
writers problem.

b. Explain why, in general, this construct cannot be implemented
efficiently.

c. What restrictions need to be put on the await statement so that
it can be implemented efficiently? (Hint: Restrict the generality of
B; see Kessels [1977].)

Write a monitor that implements an alarm clock that enables a calling
program to delay itself for a specified number of time units (ticks).
You may assume the existence of a real hardware clock that invokes
a procedure tick in your monitor at regular intervals.

Why do Solaris, Linux, and Windows 2000 use spinlocks as a syn-
chronization mechanism only on multiprocessor systems and not on
single-processor systems?

In log-based systems that provide support for transactions, updates to
data items cannot be performed before the corresponding entries are
logged. Why is this restriction necessary? :

Show that the two-phase locking protocol ensures conflict serializability.

What are the implications of assigning a new timestamp to a transaction
that is rolled back? How does the system process transactions that were
issued after the rolled-back transaction but that have timestamps smaller
than the new timestamp of the rolled-back transaction?
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Assume that a finite number of resources of a single resource type must
be managed. Processes may ask for a number of these resources and
—once finished —will return them. As an example, many commercial
software packages provide a given number of licenses, indicating the
number of applications that may run concurrently. When the application
is started, the license count is decremented. When the application is
terminated, the license count is incremented. If all licenses are in use,
requests to start the application are denied. Such requests will only be
granted when an existing license holder terminates the application and
a license is returned.

The following program segment is used to manage a finite number of
instances of an available resource. The maximum number of resources
and the number of available resources are declared as follows:

#define MAX_RESOURCES 5
int available resources = MAX_RESOURCES;

When a process wishes to obtain a number of resources, it invokes the
decrease count () function:

/* decrease available resources by count resources */
/* return 0 if sufficient resources available, */
/* otherwise return -1 */
int decrease_count(int count) {
if (available_resources < count)
return -1;
else {
available resources —-= count;

return 0;

}
}

When a process wants to return a number of resources, it calls the
decrease_count () function:

/* increase available_resources by count */
int increase_count(int count) {
available resources += count;

return O;

}

The preceding program segment produces a race condition. Do the
following:

Identify the data involved in the race condition.

b. Identify the location (or locations) in the code where the race
condition occurs.

¢. Using a semaphore, fix the race condition.
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6.28 The decrease_count() function in the previous exercise currently
returns 0 if sufficient resources are available and -1 otherwise. This leads
to awkward programming for a process that wishes obtain a number of
resources:

while (decrease_count(count) == -1)

Rewrite the resource-manager code segment using a monitor and
condition variables so that the decrease_count() function suspends
the process until sufficient resources are available. This will allow a
process to invoke decrease_count () by simply calling

decrease_count (count) ;

The process will only return from this function call when sufficient
resources are available.,

Project: Producer-Consumer Problem

In Section 6.6.1, we present a semaphore-based solution to the producer-
consumer problem using a bounded buffer. In this project, we will design a
programming solution to the bounded-buffer problem using the producer and
consumer processes shown in Figures 6.10 and 6.11. The solution presented in
Section 6.6.1 uses three semaphores: empty and full, which count the number
of empty and full slots in the buffer, and mutex, which is a binary (or mutual
exclusion) semaphore that protects the actual insertion or removal of items
in the buffer. For this project, standard counting semaphores will be used for
empty and full, and, rather than a binary semaphore, a mutex lock will be
used to represent mutex. The producer and consumer—running as separate
threads—will move items to and from a buffer that is synchronized with these
empty, full, and mutex structures. You can solve this problem using either
Pthreads or the Win32 APL

The Buffer

Internally, the buffer will consist of a fixed-size array of type buffer.item
(which will be defined using a typefdef). The array of buffer_item objects
will be manipulated as a circular queue. The definition of buffer_item, along
with the size of the buffer, can be stored in a header file such as the following:

/* buffer.h */
typedef int buffer_item;
#define BUFFER_SIZE 5

The buffer will be manipulated with two functions, insert item() and
remove_item(), which are called by the producer and consumer threads,
respectively. A skeleton outlining these functions appears as:
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#include <buffer.h> 5

/* the buffer */
buffer_item buffer [BUFFER.SIZE];

int insert_item(buffer_item item) {
/* insert item into buffer
return 0 if successful, otherwise
return -1 indicating an error condition */

}

int remove.item(buffer item *item) {
/* remove an object from buffer
placing it in item
return 0 if successful, otherwise
return -1 indicating an error condition */

}

The insert_item() and remove_item() functions will synchronize the pro-
ducer and consumer using the algorithms outlined in Figures 6.10 and 6.11.
The buffer will also require an initialization function that initializes the mutual-
exclusion object mutex along with the empty and full semaphores.

The main() function will initialize the buffer and create the separate
producer and consumer threads. Once it has created the producer and
consumer threads, the main () function will sleep for a period of time and,
upon awakening, will terminate the application. The main () function will be
passed three parameters on the command line:

1. How long to sleep before terminating

2. The number of producer threads

3. The number of consumer threads

A skeleton for this function appears as:

#include <buffer.h>

int main(int argc, char *argv(]) {

/*

/*

/*

/*

/*

/*
}

Oy T i W N =

Get command line arguments argv[l], argv[2], argv[3] =*/
Initialize buffer */

Create producer thread(s) */

Create consumer thread(s) */

Sleep */

Exit */

Producer and Consumer Threads

The producer thread will alternate between sleeping for a random period of
time and inserting a random integer into the buffer. Random numbers will



238

Chapter 6 Process Synchronization

be produced using the rand() function, which produces random iritegers
between 0 and RAND_MAX. The consumer will also sleep for a random period
of time and, upon awakening, will attempt to remove an item from the buffer.
An outline of the producer and consumer threads appears as:

#include <stdlib.h> /* required for rand() */
#include <buffer.h>

void *producer(void *param) {
buffer_item rand;

while (TRUE) {
/* sleep for a random period of time */
sleep(...);
/* generate a random number */
rand = rand();
printf ("producer produced %f\n",rand);
if (insert_item(rand))
fprintf ("report error condition");

h

void *consumer (void *param) {
buffer item rand;

while (TRUE) {
/* sleep for a random period of time */
sleep(...);
if (remove_item(&rand))
fprintf ("report error condition");
else
printf("consumer consumed %f\n",rand);

}

In the following sections, we first cover details specific to Pthreads and then
describe details of the Win32 API.

Pthreads Thread Creation
Creating threads using the Pthreads API is discussed in Chapter 4. Please refer
to that chapter for specific instructions regarding creation of the producer and
consumer using Pthreads.

Pthreads Mutex Locks

The following code sample illustrates how mutex locks available in the Pthread
API can be used to protect a critical section:
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#include <«pthread.h= »
pthread mutex t mutex;

/* create the mutex lock */
pthread mutex_init (&mutex,NULL) ;

/* acquire the mutex lock */
pthread mutex_lock (&mutex) ;

/*** critical section #***/

/* release the mutex lock */
pthread mutex_unlock (&mutex) ;

Pthreads uses the pthread mutex_t data type for mutex locks. A
mutex is created with the pthread mutex init(&mutex,NULL) function,
with the first parameter being a pointer to the mutex. By passing NULL
as a second parameter, we initialize the mutex to its default attributes.
The mutex is acquired and released with the pthread mutex_lock() and
pthread mutex.unlock () functions. If the mutex lock is unavailable when
pthread mutex.lock() is invoked, the calling thread is blocked until the
owner invokes pthread mutex unlock (). All mutex functions return a value
of 0 with correct operation; if an error occurs, these functions return a nonzero
error code.

Pthreads Semaphores

Pthreads provides two types of semaphores—named and unnamed. For this
project, we use unnamed semaphores. The code below illustrates how a
semaphore is created:

#include <semaphore.h:>
sem_t sem;

/* Create the semaphore and initialize it to 5 */
sem_init(&sem, 0, 5);

The sem_init () creates and initializes a semaphore. This function is passed
three parameters:

1. A pointer to the semaphore
2. A flag indicating the level of sharing

3. The semaphore’s initial value

In this example, by passing the flag 0, we are indicating that this semaphore
can only be shared by threads belonging to the same process that created
the semaphore. A nonzero value would allow other processes to access the
semaphore as well. In this example, we initialize the semaphore to the value 5.
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In Section 6.5, we described the classical wait () and signal () semaphore
operations. Pthreads names the wait () and signal () operations sem_wait ()
and sem_post(), respectively. The code example below creates a binary
semaphore mutex with an initial value of 1 and illustrates its use in protecting
a critical section:

#include <semaphore.h>
sem_t sem mutex;

/* create the semaphore */
sem_init (&mutex, O, 1);

/* acquire the semaphore */
sem_wait (&mutex) ;

/¥x% critical section #*%%*/

/* release the semaphore */
sem post (&mutex) ;

Win32

Details concerning thread creation using the Win32 API are available in Chapter
4. Please refer to that chapter for specific instructions.

Win32 Mutex Locks

Mutex locks are a type of dispatcher object, as described in Section 6.8.2. The
following illustrates how to create a mutex lock using the CreateMutex ()
function:

#include <windows.h>

HANDLE Mutex;
Mutex = CreateMutex(NULL, FALSE, NULL);

The first parameter refers to a security attribute for the mutex lock. By setting
this attribute to NULL, we are disallowing any children of the process creating
this mutex lock to inherit the handle of the mutex. The second parameter
indicates whether the creator of the mutex is the initial owner of the mutex
lock. Passing a value of FALSE indicates that the thread creating the mutex is
not the initial owner; we shall soon see how mutex locks are acquired. The third
parameter allows naming of the mutex. However, because we provide a value
of NULL, we do not name the mutex. If successful, CreateMutex () returns a
HANDLE to the mutex lock; otherwise, it returns NULL.

In Section 6.8.2, we identified dispatcher objects as being either signaled
or nonsignaled. A signaled object is available for ownership; once a dispatcher
object (such as a mutex lock) is acquired, it moves to the nonsignaled state.
When the object is released, it returns to signaled.



Exercises 241

Mutex locks are acquired by invoking the WaitForSingleObject () func-
tion, passing the function the HANDLE to the lock and a flag indicating how long
to wait. The following code demonstrates how the mutex lock created above
can be acquired:

WaitForSingleObject (Mutex, INFINITE);

The parameter value INFINITE indicates that we will wait an infinite amount
of time for the lock to become available. Other values could be used that would
allow the calling thread to time out if the lock did not become available within
a specified time. If the lock is in a signaled state, WaitForSingleObject ()
returns immediately, and the lock becomes nonsignaled. A lock is released
(moves to the nonsignaled state) by invoking ReleaseMutex (), such as:

ReleaseMutex (Mutex) ;

Win32 Semaphores

Semaphores in the Win32 AP] are also dispatcher objects and thus use the same
signaling mechanism as mutex locks. Semaphores are created as follows:

#include <windows.h>

HANDLE Sem;
Sem = CreateSemaphore(NULL, 1, 5, NULL);

The first and last parameters identify a security attribute and a name for
the semaphore, similar to what was described for mutex locks. The second
and third parameters indicate the initial value and maximum value of the
semaphore. In this instance, the initial value of the semaphore is 1, and its
maximum value is 5. If successful, CreateSemaphore () returns a HANDLE to
the mutex lock; otherwise, it returns NULL.

Semaphores are acquired with the same WaitForSingleObject () func-
tion as mutex locks. We acquire the semaphore Sem created in this example by
using the statement:

WaitForSingleObject (Semaphore, INFINITE);

If the value of the semaphore is > 0, the semaphore is in the signaled state
and thus is acquired by the calling thread. Otherwise, the calling thread blocks
indefinitely —as we are specifying INFINITE—until the semaphore becomes
signaled.

The equivalent of the signal() operation on Win32 semaphores is the
ReleaseSemaphore () function. This function is passed three parameters: (1)
the HANDLE of the semaphore, (2) the amount by which to increase the value

of the semaphore, and (3) a pointer to the previous value of the semaphore. We - -

can increase Sem by 1 using the following statement:

ReleaseSemaphore(Sem, 1, NULL);

Both ReleaseSemaphore() and ReleaseMutex () return 0 if successful and
nonzero otherwise.
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In a multiprogramming environment, several processes may compete for a
finite number of resources. A process requests resources; and if the resources
are not available at that time, the process enters a waiting state. Sometimes,
a waiting process is never again able to change state, because the resources
it has requested are held by other waiting processes. This situation is called
a deadlock. We discussed this issue briefly in Chapter 6 in connection with
semaphores.

Perhaps the best illustration of a deadlock can be drawn from a law passed
by the Kansas legislature early in the 20th century. It said, in part: “When two
trains approach each other at a crossing, both shall come to a full stop and
neither shall start up again until the other has gone.”

In this chapter, we describe methods that an operating system can use to
prevent or deal with deadlocks. Most current operating systems do not provide
deadlock-prevention facilities, but such features will probably be added soon.
Deadlock problems can only become more common, given current trends,
including larger numbers of processes, multithreaded programs, many more
resources within a system, and an emphasis on long-lived file and database
servers rather than batch systems.

CHAPTER OBJECTIVES

# To develop a description of deadlocks, which prevent sets of concurrent
processes from completing their tasks

e To present a number of different methods for preventing or avoiding
deadlocks in a computer system.

Svystem Model

A system consists of a finite number of resources to be distributed among
a number of competing processes. The resources are partitioned into several
types, each consisting of some number of identical instances. Memory space,
CPU cycles, files, and [/O devices (such as printers and DVD drives) are examples
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of resource types. If a system has two CPUs, then the resource type Cru has
two instances. Similarly, the resource type printer may have five instances.

[f a process requests an instance of a resource type, the allocation of aiy
instance of the type will satisfy the request. If it will not, then the instances are
not identical, and the resource type classes have not been defined properly. For
example, a system may have two printers. These two printers may be defined to
be in the same resource class if no one cares which printer prints which output.
However, if one printer is on the ninth floor and the other is in the basement,
then people on the ninth floor may not see both printers as equivalent, and
separate resource classes may need to be defined for each printer.

A process must request a resource before using it and must release the
resource after using it. A process may request as many resources as it requires
to carry out its designated task. Obviously, the number of resources requested
may not exceed the total number of resources available in the system. In other
words, a process cannot request three printers if the system has only two.

Under the normal mode of operation, a process may utilize a resource in
only the following sequence:

1. Request. If the request cannot be granted immediately (for example, if the
resource is being used by another process), then the requesting process
must wait until it can acquire the resource.

2. Use. The process can operate on the resource (for example, if the resource
is a printer, the process can print on the printer).

3. Release. The process releases the resource.

The request and release of resources are system calls, as explained in
Chapter 2. Examples are the request () and release() device, open() and
close() file, and allocate () and free () memory system calls. Request and
release of resources that are not managed by the operating system can be
accomplished through the wait () and signal() operations on semaphores
or through acquisition and release of a mutex lock. For each use of a kernel-
managed resource by a process or thread, the operating system checks to
make sure that the process has requested and has been allocated the resource.
A system table records whether each resource is free or allocated; for each
resource that is allocated, the table also records the process to which it is
allocated. If a process requests a resource that is currently allocated to another
process, it can be added to a queue of processes waiting for this resource.

A set of processes is in a deadlock state when every process in the set is
waiting for an event that can be caused only by another process in the set. The
events with which we are mainly concerned here are resource acquisition and
release. The resources may be either physical resources (for examptle, printers,
tape drives, memory space, and CPU cycles) or logical resources (for example,
files, semaphores, and monitors). However, other types of events may result in
deadlocks (for example, the [PC facilities discussed in Chapter 3).

To illustrate a deadlock state, consider a system with three CD RW drives.
Suppose each of three processes holds one of these CD RW drives. If each
process now requests another drive, the three processes will be in a deadlock
state. Each is waiting for the event “CD RW is released,” which can be caused
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only by one of the other waiting processes. This example illustrates a deadlock
involvi ing the same resource type.

Deadlocks may also involve ditferent resource types. For example, consider
asystem with one printer and one DVD drive. Suppose that process P; is holding
the DVD and process P; is holding the printer. If I’ requests the printer and P
requests the DVD drive, a deadloc}\ occurs.

A programmer who is developing multithreaded applications must pay
particular attention to this problem. Multithreaded programs are good candi-
dates for deadlock because multiple threads can compete for shared resources.

Deadiock Characterization

In a deadlock, processes never finish executing, and system resources are tied
up, preventing other jobs from starting. Before we discuss the various methods
for dealing with the deadlock problem, we look more closely at features that
characterize deadlocks.

7.2.1 Necessary Conditions

A deadlock situation can arise if the following four conditions hold simultane-
ously in a system:

1. Mutual exclusion. At least one resource must be held in a nonsharable
mode; that is, only one process at a time can use the resource. If another
process requests that resource, the requesting process must be delayed
until the resource has been released.

DEADLOCK WITH MUTEX LOCKS

Tet's see how deadlock can oceur in.a multithreaded Pthread . program
using  mutex locks. The pthread mutex. init () function initializes
an “unlocked  mutex. Mutex locks are -acquired “and - released  using
:pthread mutex lock() . .and p.tjhre.a:djmut_ex;unloc’l{()" L réspecs
fively. If a thread attempts to acquire a. locked. mutex, the call to
pthread amutexslock() blocks the thread: tntil the owner of the miutex

lock invokes pthread.mutex unlock (), o e

Two miute ¥ locks are creat cd i the mlimwmw md(? oxai‘nple:_

/#* Create and 1nltldll£P the mutex 10Cku */
pthread mutex.t first.outex;
pthread mutex.t second.mubex;

pthread.mutex init (&firstmitex NULL), = 7
pthread mutex init (§second.mutex ,NULL) .

Nexl, two threads—thread.one and thread_ two-sar ted, and both
these threads have access to both mutex locks. thread one and thread. two
run i_h.' the functions do.work._one () and do__,wé?rk:__;i:iw'o (), respectively, as
shown in Figure 7.1.
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DEADLOCK WITH MUTEX LOCKS (Cont) oo

3 pthze"{ ;e.;e;;i;r_;:x ¢2>;>j;.,;. .

A .t.'h;_re:ad;two lrum_é- in thls fﬁ;m(;:t::i_o_n: *}’. L
void *dowobk. twolvoid *param) .
o 'pthread mhtex loc} 1 &second_mutex) ;e
pthread mutex. loc] (&firstmatex):
/ * &

* Do Some wclk

*/ ' : _
pthread.mut exunlock (-.&first_nmtex) :
pthread muitexunlock (&sedond mutex) »°

pth:‘fe:ad;e;ci-;t-:( O;)- s

'-Figu':_"e'?d ' Deadlock -exiample. :

3(:r1dlo<, k ls pos b]e n‘ thread _one vaUI,
mlaqwteﬂa seccmd mute}’

ilu%tx atus a pmk }em with hand]mnr dr‘adimks it ig’ d]mu_ Hﬁ tm Advntl_‘{

and
test for deadlocks that may occtr mﬂv wrider (“L‘I tain umum%._ ' '

2. Hold and wait. A process must be holding at least one resource and
waiting to acquire additional resources that are currently being held by
other processes.

3. No preemption. Resources cannot be preempted; that is, a resource can
be released only voluntarily by the process holding it, after that process
has completed its task.
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4. Circular wait. A set { [}, I}, ..., P} of waiting processes must exist such
that P is waiting for a resource held by [, P; is waiting for a resource
held by Ps, ..., P, is waiting for a resource held by P, and P, is waiting
for a resource held by P,.

We emphasize that all four conditions must hold for a deadlock to
occur. The circular-wait condition implies the hold-and-wait condition, so the
four conditions are not completely independent. We shall see in Section 7.4,
however, that it is useful to consider each condition separately.

7.2.2 Resource-Allocation Graph

Deadlocks can be described more precisely in terms of a directed graph called
a system resource-allocation graph. This graph consists of a set of vertices V
and a set of edges E. The set of vertices V is partitioned into two different types
of nodes: P = { P, P, ..., P}, the set consisting of all the active processes in the
system, and R = {R|, Ry, ..., R}, the set consisting of all resource types in the
system.

A directed edge from process I to resource type R; is denoted by P; — R;;
it signifies that process P has requested an instance of resource type R; and
is currently waiting for that resource. A directed edge trom resource type R;
to process P; is denoted by R; — D;; it signifies that an instance of resource
type R; has been allocated to process F;. A directed edge P; — R; is called a
request edge; a directed edge R; — P is called an assignment edge.

Pictorially, we represent each process P; as a circle and each resource type
R; as a rectangle. Since resource type R; may have more than one instance, we
represent each such instance as a dot within the rectangle. Note that a request
edge points to only the rectangle K;, whereas an assignment edge must also
designate one of the dots in the rectangle.

When process P requests an instance of resource type R;, a request edge
is inserted in the resource-allocation graph. When this request can be fulfilled,
the request edge is instaitancously transformed to an assignment edge. When
the process no longer needs access to the resource, it releases the resource; as a
result, the assignment edge is deleted.

The resource-allocation graph shown in Figure 7.2 depicts the following
situation.

® Thesets P R, and E:

o P= {P}, pg, Pﬂ,}

o R = {R], RQ, R3, Ri}

& E:{PI — R}, Pj‘" R;, R] —> Pg, R3 — Pz, Rz — P], Rg — P:-‘,}
2 Resource instances:

o One instance of resource type R;

= Two instances of resource type R»

~ One instance of resource type R

o Three instances of resource type Ry
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Figure 7.2 Resource-allocation graph.

# [rocess states:

o Process P is holding an instance of resource type R, and is waiting for
an instance of resource type R,.

o Process P, is holding an instance of R; and an instance of R, and is
waiting for an instance of Rs.

o Process Py is holding an instance of Rs.

Given the definition of a resource-allocation graph, it can be shown that, if
the graph contains no cycles, then no process in the system is deadlocked. 1f
the graph does contain a cycle, then a deadlock may exist.

If each resource type has exactly one instance, then a cycle implies that a
deadlock has occurred. If the cycle involves only a set of resource types, each
of which has only a single instance, then a deadlock has occurred. Each process
involved in the cycle is deadlocked. In this case, a cycle in the graph is both a
necessary and a sufficient condition for the existence of deadlock.

If each resource type has several instances, then a cycle does not necessarily
imply that a deadlock has occurred. In this case, a cycle in the graph is a
necessary but not a sufficient condition for the existence of deadlock.

To illustrate this concept, we return to the resource-allocation graph
depicted in Figure 7.2. Suppose that process P; requests an instance of resource
type R». Since no resource instance is currently available, a request edge P —
R» is added to the graph (Figure 7.3). At this point, two minimal cycles exist in
the system:

P|—> Rs—e— Pz—) Rg*“?‘ Pq—» Rg—) Pl

Pz—i> R;-w) P_qw» Rg——,> Pg

Processes Py, P>, and P; are deadlocked. Process P is waiting for the resource
Rs, which is held by process P;. Process Ps is waiting for either process P; or
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Figure 7.3 Resource-allocation graph with a deadlock.

process P to release resource R». In addition, process P is waiting for process
P; to release resource R;.

Now consider the resource-allocation graph in Figure 7.4. In this example,
we also have a cycle

P1—> Rlﬁé P3~% Rz*ﬁ' P-[

However, there is no deadlock. Observe that process Py may release its instance
of resource type R,. That resource can then be allocated to P;, breaking the cycle.

In summary, if a resource-allocation graph does not have a cycle, then the
system is nof in a deadlocked state. If there is a cycle, then the system may or
may not be in a deadlocked state. This observation is important when we deal

with the deadlock problem.
R,

Ps.

Figure 7.4 Resource-allocation graph with a cycle but no deadlock.
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Chapter 7 Deadlocks
Methods for Handling Deadlocks

Gene1a11v speaking, we can deal with the deadlock problem in one of three
wavs

®» We can use a protocol to prevent or avoid deadlocks, ensuring that the
system will sicver enter a deadlock state.

#  We can allow the system to enter a deadlock state, detect it, and recover.

e We can ignore the problem altogether and pretend that deadlocks never
occur in the system.

The third solution is the one used by most operating systems, including UNIX
and Windows; it is then up to the application developer to write programs that
handle deadlocks.

Next, we elaborate briefly on each of the three methods for handling
deadlocks. Then, in Sections 7.4 through 7.7, we present detailed algorithms.
However, before proceeding, we should mention that some researchers have
argued that none of the basic approaches alone is appropriate for the entire
spectrum of resource-allocation problems in operating systems. The basic
approaches can be combined, however, allowing us to select an optimal
approach for each class of resources in a system.

To ensure that deadlocks never occur, the system can use either a deadlock-
prevention or a deadlock-avoidance scheme. Deadlock prevention provides
a set of methods for ensuring that at least one of the necessary conditions
(Section 7.2.1) cannot hold. These methods prevent deadlocks by constraining
how requests for resources can be made. We discuss these methods in Section
74.

Deadlock avoidance requires that the operating system be given in
advance additional information concerning which resources a process will
request and use during its lifetime. With this additional knowledge, it can
decide for each request whether or not the process should wait. To decide
whether the current request can be satisfied or must be delayed, the system
must consider the resources currently available, the resources currently allo-
cated to each process, and the future requests and releases of each process. We
discuss these schemes in Section 7.5.

If a system does not employ either a deadlock-prevention or a deadlock-
avoidance algorithm, then a deadlock situation may arise. In this environment,
the system can provide an algorithm that examines the state of the system to
determine whether a deadlock has occurred and an algorithm to recover from
the deadlock (if a deadlock has indeed occurred). We discuss these issues in
Section 7.6 and Section 7.7.

If a system neither ensures that a deadlock will never occur nor provides
a mechanism for deadlock detection and recovery, then we may arrive at
a situation where the system is in a deadlocked state yet has no way of
recognizing what has happened. In this case, the undetected deadlock will
resultin deterioration of the system’s performance, because resources are being
held by processes that cannot run and because more and more processes, ab
they make requests for resources, will enter a deadlocked state. Eventually, the
system will stop functioning and will need to be restarted manually.
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Although this method may not seem to be a viable approach to the deadlock
problem, it is nevertheless used in most operating systems, as mentioned
earlier. In many systems, deadlocks occur infrequently (say, once per year);
thus, this method is cheaper than the prevention, avoidance, or detection and
recovery methods, which mustbe used constantly. Also, in some circumstances,
a system is in a frozen state but not in a deadlocked state. We see this situation,
for example, with a real-time process running at the highest priority (or any
process running on a nonpreemptive scheduler) and never returning control
to the operating system. The system must have manual recovery methods for
such conditions and may simply use those techniques for deadlock recovery.

Deadiocck Prevention

As we noted in Section 7.2.1, for a deadlock to occur, each of the four necessary
conditions must hold. By ensuring that at least one of these conditions cannot
hold, we can prevent the occurrence of a deadlock. We elaborate on this
approach by examining each of the four necessary conditions separately.

7.4.1 WMutual Exclusion

The mutual-exclusion condition must hold for nonsharable resources. For
example, a printer cannot be simultaneously shared by several processes.
Sharable resources, in contrast, do not require mutually exclusive access and
thus cannot be involved in a deadlock. Read-only files are a good example of
a sharable resource. If several processes attempt to open a read-only file at the
same time, they can be granted simultaneous access to the file. A process never
needs to wait for a sharable resource. In general, however, we cannot prevent
deadlocks by denying the mutual-exclusion condition, because some resources
are intrinsically nonsharable.

7.4.2 Hold and Wait

To ensure that the hold-and-wait condition never occurs in the system, we must
guarantee that, whenever a process requests a resource, it does not hold any
other resources. One protocol that can be used requires each process to request
and be allocated all its resources before it begins execution. We can implement
this provision by requiring that system calls requesting resources for a process
precede all other system calls.

An alternative protocol allows a process to request resources only when it
has none. A process may request some resources and use them. Before it can
request any additional resources, however, it must release all the resources that
it is currently allocated.

To illustrate the difference between these two protocols, we consider a
process that copies data from a DVD drive to a file on disk, sorts the file, and
then prints the results to a printer. If all resources must be requested at the
beginning of the process, then the process must initially request the DVD drive,
disk file, and printer. It will hold the printer for its entire execution, even though
it needs the printer only at the end.

The second method allows the process to request initially only the DVD
drive and disk file. It copies from the DVD drive to the disk and then releases
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both the DVD drive and the disk file. The process must then again request the
disk file and the printer. After copying the disk file to the printer, it releases
these two resources and terminates.

Both these protocols have two main disadvantages. First, resource utiliza-
tion may be low, since resources may be allocated but unused for a long period.
In the example given, for instance, we can release the DVD drive and disk file,
and then again request the disk file and printer, only if we can be sure that our
data will remain on the disk file. If we cannot be assured that they will, then
we must request all resources at the beginning for both protocols.

Second, starvation is possible. A process that needs several popular
resources may have to wait indefinitely, because at least one of the resources
that it needs is always allocated to some other process.

7.4.3 No Preemption

The third necessary condition for deadlocks is that there be no preemption
of resources that have already been allocated. To ensure that this condition
does not hold, we can use the following protocol. If a process is holding some
resources and requests another resource that cannot be immediately allocated
to it (that is, the process must wait), then all resources currently being held
are preempted. In other words, these resources are implicitly released. The
preempted resources are added to the list of resources for which the process is
waiting. The process will be restarted only when it can regain its old resources,
as well as the new ones that it is requesting,.

Alternatively, if a process requests some resources, we first check whether
they are available. If they are, we allocate them. If they are not, we check
whether they are allocated to some other process that is waiting for additional
resources. If so, we preempt the desired resources from the waiting process and
allocate them to the requesting process. If the resources are neither available
nor held by a waiting process, the requesting process must wait. While it is
waiting, some of its resources may be preempted, but only if another process
requests them. A process can be restarted only when it is allocated the new
resources it is requesting and recovers any resources that were preempted
while it was waiting.

This protocol is often applied to resources whose state can be easily saved
and restored later, such as CPU registers and memory space. It cannot generally
be applied to such resources as printers and tape drives.

7.4.4 Circular Wait

The tourth and final condition for deadlocks is the circular-wait condition. One
way to ensure that this condition never holds is to impose a total ordering of
all resource types and to require that each process requests resources in an
increasing order of enumeration.

To illustrate, we let R = {Ry, Ra, ..., R} be the set of resource types. We
assign to each resource type a unique integer number, which allows us to
compare two resources and to determine whether one precedes another in our
ordering. Formally, we define a one-to-one function F: R — N, where N is the
set of natural numbers. For example, if the set of resource types R includes
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tape drives, disk drives, and printers, then the function F might be detined as
follows:

F(tape drive) =1
F(disk drive) =5
F(printer) = 12

We can now consider the following protocol to prevent deadlocks: Each
process can request resources only in an increasing order of enumeration. That
is, a process can initially request any number of instances of a resource type—
say, R;. After that, the process can request instances of resource type R; if and
only if F(R;) > F(R;). If several instances of the same resource type are needed,
a single reque%t for all of them must be issued. For example, using the function
defined plev1ously, a process that wants to use the t tape drive and printer at
the same time must first request the tape drive and then request the printer.
Alternatively, we can require that, whenever a process requests an instance of
resource type R;, it has released any resources R; such that F(R;) > F(R;).

If these two protocols are used, then the circular-wait condition cannot
hold. We can demonstrate this fact by assuming that a circular wait exists
(proof by contradiction). Let the set of processes involved in the circular wait be
{Py, P, ..., Py}, where P; is waiting for a resource R;, which is held by process
Piy1. (Modulo arithmetic is used on the indexes, so that P, is waiting for
a resource R, held by Py.) Then, since process P is holding resource R;
while requesting resource R;;, we must have F(R;) < F(R;;y), for all i. But
this condition means that F(Ry) < F(Ry) < ... < F(R,;) < F(Ry). By transitivity,
F(Ro) < F(Ry), which is impossible. Therefore, there can be no circular wait.

We can accomplish this scheme in an application program by developing
an ordering among all synchronization objects in the system. All requests for
synchmm/atlon objects must be made in increasing order. For example, if the
lock ordering in the Pthread program shown in Flgure 7.1 was

F(first mutex) =1
F(second mutex) =5

then thread_two could not request the locks out of order.

Keep in mind that developing an ordering, or hierarchy, in itself does not
prevent deadlock. It is up to application developers to write programs that
follow the ordering. Also note that the function F should be defined according
to the normal Oldel of usage of the resources in a system. For example, because
the tape drive is usually needed before the printer, it would be reasonable to
define F(tape drive) < F(printer).

Although ensuring that resources are acquired in the proper order is the
responsibility of application developers, certain software can be used to verify
that locks are acquired in the proper order and to give appropriate warnings
when locks are acquired out of order and deadlock is possible. One lock-order
verifier, which works on BSD versions of UNIX such as FreeBSD, is known as
witness. Witness uses mutual-exclusion locks to protect critical sections, as
described in Chapter 6; it works by dynamically maintaining the relationship
of lock orders in a system. Let’s use the program shown in Figure 7.1 as an
example. Assume that thread_one is the first to acquire the locks and does so in
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the order (1) first mutex, (2) second mutex. Witness records the relationship
that first mutex must be acquired before second.mutex. If thread._two later
acquires the locks out of order, witness generates a warning message on the
system console.

Deadiock Avgidance

Deadlock-prevention algorithms, as discussed in Section 7.4, prevent deadlocks
by restraining how requests can be made. The restraints ensure that at least
one of the necessary conditions for deadlock cannot occur and, hence, that
deadlocks cannot hold. Possible side effects of preventing deadlocks by this
method, however, are low device utilization and reduced system throughput.

An alternative method for avoiding deadlocks is to require additional
information about how resources are to be requested. For example, in a system
with one tape drive and one printer, the system might need to know that
process P will request first the tape drive and then the printer before releasing
both resources, whereas process Q will request first the printer and then the
tape drive. With this knowledge of the complete sequence of requests and
releases for each process, the system can decide for each request whether or
not the process should wait in order to avoid a possible future deadlock. Each
request requires that in making this decision the system consider the resources
currently available, the resources currently allocated to each process, and the
future requests and releases of each process.

The various algorithms that use this approach differ in the amount and type
of information required. The simplest and most useful model requires that each
process declare the maxinun munber of resources of each type that it may need.
Given this a priori information, it is possible to construct an algorithm that
ensures that the system will never enter a deadlocked state. Such an algorithm
defines the deadlock-avoidance approach. A deadlock-avoidance algorithm
dynamically examines the resource-allocation state to ensure that a circular-
wait condition can never exist. The resource-allocation state is defined by the
number of available and allocated resources and the maximum demands of
the processes. In the following sections, we explore two deadlock-avoidance
algorithms.

7.5.1 Safe State

A state is safe if the system can allocate resources to each process (up to its
maximum) in some order and still avoid a deadlock. More formally, a system
is in a safe state only if there exists a safe sequence. A sequence of processes
<Py, P», ..., P,> is a safe sequence for the current allocation state if, for each
P;, the resource requests that P; can still make can be satisfied by the currently
available resources plus the resources held by all P;, with j < i. In this situation,
if the resources that P; needs are not immediately available, then P; can wait
until all P; have finished. When they have finished, P; can obtain all of its
needed resources, complete its designated task, return its allocated resources,
and terminate. When P; terminates, P;.; can obtain its needed resources, and
so on. If no such sequence exists, then the system state is said to be unsafe.
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Figure 7.5 Safe, unsafe, and deadlock state spaces.

A safe state is not a deadlocked state. Conversely, a deadlocked state is
an unsafe state. Not all unsafe states are deadlocks, however (Figure 7.5).
An unsafe state iy lead to a deadlock. As long as the state is safe, the
operating system can avoid unsafe (and deadlocked) states. In an unsafe state,
the operating system cannot prevent processes from requesting resources such
that a deadlock occurs: The behavior of the processes controls unsafe states.

To illustrate, we consider a system with 12 magnetic tape drives and three
processes: Py, Py, and P>. Process Py requires 10 tape drives, process P; may
need as many as 4 tape drives, and process [>> may need up to 9 tape drives.
Suppose that, at time t), process Py is holding 5 tape drives, process Py is
holding 2 tape drives, and process P is holding 2 tape drives. (Thus, there are
3 free tape drives.)

Maximum Needs  Current Needs

B 10 5
P 4 2
P 9 2

At time ty, the system is in a safe state. The sequence <Py, I, P> satisfies
the safety condition. Process P, can immediately be allocated all its tape drives
and then return them (the system will then have 5 available tape drives); then
process Py can get all its tape drives and return them (the system will then have
10 available tape drives); and finally process P> can get all its tape drives and
return them (the system will then have all 12 tape drives available).

A system can go from a safe state to an unsafe state. Suppose that, at time
ty, process P> requests and is allocated one more tape drive. The system is no
longer in a safe state. At this point, only process P; can be allocated all its tape .
drives. When it returns them, the system will have only 4 available tape drives.
Since process [ is allocated 5 tape drives but has a maximum of 10, it may
request 5 more tape drives. Since they are unavailable, process Py must wait.
Similarly, process P> may request an additional 6 tape drives and have to wait,
resulting in a deadlock. Our mistake was in granting the request from process
P> for one more tape drive. If we had made P> wait unti} either of the other
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processes had finished and released its resources, then we could have avoided
the deadlock.

Given the concept of a safe state, we can define avoidance algorithms that
ensure that the system will never deadlock. The idea is simply to ensure that the
svstem will always remain in a safe state. Initially, the system is in a safe state.
Whenever a process requests a resource that is currently available, the system
must decide whether the resource can be allocated immediately or whether
the process must wait. The request is granted only if the allocation leaves the
system in a safe state.

In this scheme, if a process requests a resource that is currently available,
it may still have to wait. Thus, resource utilization may be lower than it would
otherwise be.

7.5.2 Resource-Allocation-Craph Algorithm

If we have a resource-allocation system with only one instance of each resource
type, a variant of the resource-allocation graph defined in Section 7.2.2 can be
used for deadlock avoidance. In addition to the request and assignment edges
already described, we introduce a new type of edge, called a claim edge.
A claim edge P; — R; indicates that process F; may request resource R; at
some time in the future. This edge resembles a request edge in direction but is
represented in the graph by a dashed line. When process P; requests resource
Ry, the claim edge P; — R; is converted to a request edge. Similarly, when a
resource R; is released by P;, the assignment edge R; — P is reconverted to
a claim edge P; — R;. We note that the resources must be claimed a priori in
the system. That is, before process P; starts executing, all its claim edges must
already appear in the resource-allocation graph. We can relax this condition by
allowing a claim edge P; — R; to be added to the graph only if all the edges
associated with process F; are claim edges.

Suppose that process P; requests resource R;. The request can be granted
only if converting the request edge P, — R; to an assignment edge R; — P;
does not result in the formation of a cycle in the resource-allocation graph. Note
that we check for safety by using a cycle-detection algorithm. An algorithm for
detecting a cycle in this graph requires an order of in* operations, where # is
the number of processes in the system.

If no cycle exists, then the allocation of the resource will leave the system
in a safe state. If a cycle is found, then the allocation will put the system in

Figure 7.6 Resource-allocation graph for deadlock avoidance.
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Figure 7.7 An unsafe state in a resource-allocation graph.

an unsafe state. Therefore, process P; will have to wait for its requests to be
satisfied.

To illustrate this algorithm, we consider the resource-allocation graph of
Figure 7.6. Suppose that P, requests R,. Although R, is currently free, we
cannot allocate it to P, since this action will create a cycle in the graph (Figure
7.7). A cycle indicates that the system is in an unsafe state. If P; requests R,
and P, requests R, then a deadlock will occur.

7.5.3 Banker’s Algorithm

The resource-allocation-graph algorithm is not applicable to a resource-
allocation system with multiple instances of each resource type. The deadlock-
avoidance algorithm that we describe next is applicable to such a system but
is less efficient than the resource-allocation graph scheme. This algorithm is
commonly known as the banker’s algoritlin. The name was chosen because the
algorithm could be used in a banking system to ensure that the bank never
allocated its available cash in such a way that it could no longer satisfy the
needs of all its customers.

When a new process enters the system, it must declare the maximum
number of instances of each resource type that it may need. This number may
not exceed the total number of resources in the system. When a user requests
a set of resources, the system must determine whether the allocation of these
resources will leave the system in a safe state. If it will, the resources are
allocated; otherwise, the process must wait until some other process releases
enough resources.

Scveral data structures must be maintained to implement the banker’s
algorithm. These data structures encode the state of the resource-allocation
system. Let 7 be the number of processes in the system and m be the number
of resource types. We need the following data structures:

# Available. A vector of length 1 indicates the number of available resources
of each type. If Available[j] equals k, there are k instances of resource type
R; available.

e Max. An i1 x m matrix defines the maximum demand of each process.
If Max[i][j] equals k, then process P; may request at most k instances of
resource type R;.
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e Allocation. An i x i matrix detines the number of resources of eacht type
currently allocated to each process. If Allocation|i][j] equals k, then process
P, is currently allocated & instances of resource type R;.

® Need. An n x i matrix indicates the remaining resource need of each
process. If Need[il[j] equals k, then process P; may need k more instances of
resource type R; to complete its task. Note that Need[i][j] equals Max[i][/]
— Allocation[i][j].

These data structures vary over time in both size and value.

To simplify the presentation of the banker’s algorithm, we next establish
some notation. Let X and Y be vectors of length »#. We say that X < Y if and
only if X[i] < Y[i] foralli =1, 2, ..., in. For example, if X = (1,7,3,2) and Y =
(0,32,1), then Y = X. Y <« Xif Y < Xand Y # X.

We can treat each row in the matrices Allocation and Need as vectors
and refer to them as Allocation; and Need;. The vector Allocation; specities
the resources currently allocated to process P;; the vector Need; specifies the
additional resources that process > may still request to complete its task.

7.5.3.1 Safety Algorithm
We can now present the algorithm for finding out whether or not a system is
in a safe state. This algorithm can be described as follows:
1. Let Work and Finish be vectors of length 11 and i1, respectively. Initialize
Work = Available and Finishli] = false fori=0,1, .., n — 1.
2. Find an 7 such that both
a. Finish[i] == falsc
b. Need; < Work
If no such i exists, go to step 4.

3. Work = Work + Allocation;
Finish[it = true
Go to step 2.

4. If Finish[i] == true for all i, then the system is in a safe state.

This algorithm may require an order of m x 11* operations to determine whether
a state is safe.

7.5.3.2 Resource-Request Algorithm

We now describe the algorithm which determines if requests can be safely
granted. .

Let Request; be the request vector for process P;. If Request; [j] == k, then
process P; wants k instances of resource type K;. When a request for resources
is made by process P;, the following actions are taken:

1. If Request; < Need;, go to step 2. Otherwise, raise an error condition, since
the process has exceeded its maximum claim.
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2. 1f Request; < Awvailable, go to step 3. Otherwise, P; must wait, since the
resources are not available.

Have the system pretend to have allocated the requested resources to
process P; by modifying the state as follows:

E.IJ

Available = Available - Request;;
Allocation; = Allocation; + Requtest;;
Need; = Need; - Request;;

If the resulting resource-allocation state is safe, the transaction is com-
pleted, and process P; is allocated its resources. However, if the new state
is unsafe, then P; must wait for Request;, and the old resource-allocation
state is restored.

7.5.3.3 An Illustrative Example

Finally, to illustrate the use of the banker’s algorithm, consider a system with
five processes ) through Py and three resource types A, B, and C. Resource
type A has 10 instances, resource type 5 has 5 instances, and resource type C
has 7 instances. Suppose that, at time Tj, the following snapshot of the system
has been taken:

Al location Max Ava zlnglf

ABC ABC ABC

Py 010 753 332
P, 200 322
P 302 902
Py 211 222
P, 002 433

The content of the matrix Need is defined to be Max — Allocation and is as
follows:

Need

ABC
Pa 7473
P 122
P 600
P 011
P, 431

We claim that the system is currently in a safe state. Indeed, the sequence
<Py, P3, Py, P», Py> satisties the safety criteria. Suppose now that process
Py requests one additional instance of resource type A and two instances of
resource type C, so Request; = (1,0,2). To decide whether this request can be
immediately granted, we first check that Request) < Available—that is, that
(1,02) = (3,3,2), which is true. We then pretend that this request has been
fulfilled, and we arrive at the following new state:
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A!l)umcm Ncﬂd Available
ABC ABC ABC

Py 010 743 230
P 302 020
P 302 600
P 211 011
Py 002 431

We must determine whether this new system state is safe. To do so, we
execute our safety algorithm and find that the sequence <Py, P5, Py, Py, Po>
satisties the safety requirement. Hence, we can immediately grant the request
of process Pi.

You should be able to see, however, that when the system is in this state, a
request for (3,3,0) by Py cannot be granted, since the resources are not available.
Furthermore, a request for (0,2,0) by P, cannot be granted, even though the
resources are available, since the resulting state is unsafe.

We leave it as a programming exercise to implement the banker’s algo-
rithm.

Deadiock Detection

If a system does not employ ecither a deadlock-prevention or a deadlock-
avoidance algorithm, then a deadlock situation may occur. In this environment,
the system must provide:

® Analgorithm that examines the state of the system to determine whether
a deadlock has occurred

& An algorithm to recover from the deadlock

In the following discussion, we elaborate on these two requirements as they
pertain to systems with only a single instance of each resource type, as well as to
systems with several instances of each resource type. At this point, however, we
note that a detection-and-recovery scheme requires overhead that includes not
only the run-time costs of maintaining the necessary information and executing
the detection algorithm but also the potential losses inherent in recovering from
a deadlock.

7.6.1 Single Instance of Each Resource Type

If all resources have only a single instance, then we can define a deadlock-

detection algorithm that uses a variant of the resource-allocation graph, called - -

a wait-for graph. We obtain this graph from the resource-allocation graph by
removing the resource nodes and collapsing the appropriate edges.

More precisely, an edge from P; to I; in a wait-for graph implies that
process P; is waiting for process P; to release a resource that P; needs. An edge
P; — P; exists in a wait-for graph if and only if the corresponding resource-
allocation graph contains two edges P; — R; and R, — P; for some resource
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Figure 7.8 (a) Resource-allocation graph. (b) Corresponding wait-for graph.

R,. For example, in Figure 7.8, we present a resource-allocation graph and the
corresponding wait-for graph.

As before, a deadlock exists in the system if and only if the wait-for graph
contains a cycle. To detect deadlocks, the system needs to nuintain the wait-for
graph and periodically invoke an algoritiim that searches for a cycle in the graph.
An algorithm to detect a cycle in a graph requires an order of 1 operations,
where 11 is the number of vertices in the graph.

7.6.2 Several Instances of a Resource Type

The wait-for graph scheme is not applicable to a resource-allocation system
with multiple instances of each resource type. We turn now to a deadlock-
detection algorithm that is applicable to such a system. The algorithm employs
several time-varying data structures that are similar to those used in the
banker’s algorithm (Section 7.5.3):

& Available. A vector of length m indicates the number of available resources
of each type.

® Allocation. An 1 x m matrix defines the number of resources of each type
currently allocated to each process.

# Request. An i x m matrix indicates the current request of each process.
It Request|i]]j] equals k, then process P; is requesting k more instances of -
resource type R;.

The < relation between two vectors is defined as in Section 7.5.3. To simplify
notation, we again treat the rows in the matrices Allocation and Reguest as
vectors; we refer to them as Allocation; and Request;. The detection algorithm



264

Chapter 7 Deadlocks

described here simply investigates every possible allocation sequence for the
processes that remain to be completed. Compare this algorithm with the
banker’s algorithm of Section 7.5.3.

1. Let Work and Finish be vectors of length 11 and »n, respectively. Initialize
Work = Available. For i =0, 1, ..., n-1, it Allecation; 0, then Finish[i] = false;
otherwise, Finish{i} = true.

2. Find an index i such that both
a. Finishli] == false
b. Request; < Work

If no such i exists, go to step 4.

3. Work = Work + Allocation;
Einishii] = true
Go to step 2.

4. 1f Finish{i] == false, for some i, 0 < i < n, then the system is in a deadlocked
state. Moreover, if Finish[i] == false, then process P; is deadlocked.

This algorithm requires an order of m x n* operations to detect whether the
system is in a deadlocked state.

You may wonder why we reclaim the resources of process P; (in step 3)
as soon as we determine that Reguest; < Work (in step 2b). We know that P
is currently not involved in a deadlock (since Request; < Work). Thus, we take
an optimistic attitude and assume that P; will require no more resources to
complete its task; it will thus soon return all currently allocated resources to
the system. If our assumption is incorrect, a deadlock may occur later. That
deadlock will be detected the next time the deadlock-detection algorithm is
invoked.

To illustrate this algorithm, we consider a system with five processes P,
through P4 and three resource types A, B, and C. Resource type A has seven
instances, resource type B has two instances, and resource type C has six
instances. Suppose that, at time Tp, we have the following resource-allocation
state:

é]lﬁqgﬁf(}lrli Reguest  Available
ABC ABC ABC

Py 010 000 000
P 200 202
P 303 000
Py 211 100
Py 002 002

We claim that the system is not in a deadlocked state. Indeed, if we execute
our algorithm, we will find that the sequence <Py, I, P;, P;, Py> results in
Finish[i] == true for all i.
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Suppose now that process P: makes one additional request for an instance
of tvpe C. The Reguest matrix is modified as follows:

Request

ABC
Py 000
P, 202
P, 001
Py 100
Py 002

We claim that the system is now deadlocked. Although we can reclaim the
resources held by process Iy, the number of available resources is not sufficient
to fulfill the requests of the other processes. Thus, a deadlock exists, consisting
of processes Py, P», P;,and Py.

7.6.3 Detection-Algorithm Usage

When should we invoke the detection algorithm? The answer depends on two
factors:

1. How often is a deadlock likely to occur?

2. How many processes will be affected by deadlock when it happens?

If deadlocks occur frequently, then the detection algorithm should be invoked
frequently. Resources allocated to deadlocked processes will be idle until the
deadlock can be broken. In addition, the number of processes involved in the
deadlock cycle may grow.

Deadlocks occur only when some process makes a request that cannot
be granted immediately. This request may be the final request that completes
a chain of waiting processes. In the extreme, we can invoke the deadlock-
detection algorithm every time a request for allocation cannot be granted
immediately. In this case, we can identify not only the deadlocked set of
processes but also the specific process that “caused™ the deadlock. (In reality,
each of the deadlocked processes is a link in the cycle in the resource graph, so
all of them, jointly, caused the deadlock.) Tf there are many different resource
types, one request may create many cycles in the resource graph, each cycle
completed by the most recent request and “caused™ by the one identifiable
process.

Of course, if the deadlock-detection algorithm s invoked for every resource
request, this will incur a considerable ()ve1head in computation time. A less
expensjve alternative is simply to invoke the algorithm at less frequentintervals
—for example, once per hour or whenever CPU utilization drops below 40
percent. (A deadlock eventually cripples system throughput and causes CPU
utilization to drop.) If the detection algorithm is invoked at arbitrary points in
time, there may be many cycles in the resource graph. In this case, we would
generally not be able to tell which of the many deadlocked processes “caused™
the deadlock.
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Recovery From Deadliock

When a detection algorithm determines that a deadlock exists, several alter-
natives are available. One possibility is to inform the operator that a deadlock
has occurred and to let the operator deal with the deadlock manually. Another
possibility is to let the system recover from the deadlock automatically. There
are two options for breaking a deadlock. One is simply to abort one or more
processes to break the circular wait. The other is to preempt some resources
from one or more of the deadlocked processes.

7.7.1 Process Termination

To eliminate deadlocks by aborting a process, we use one of two methods. In
both methods, the system reclaims all resources allocated to the terminated
processes.

» Abort all deadlocked processes. This method clearly will break the
deadlock cycle, but at great expense; the deadlocked processes may have
computed for a long time, and the results of these partial computations
must be discarded and probably will have to be recomputed later.

= Abort one process at a time until the deadlock cycle is eliminated. This
method incurs considerable overhead, since, after each process is aborted,
a deadlock-detection algorithm must be invoked to determine whether
any processes are still deadlocked.

Aborting a process may not be easy. If the process was in the midst of
updating a file, terminating it will leave that file in an incorrect state. Similarly,
if the process was in the midst of printing data on a printer, the system must
reset the printer to a correct state before printing the next job.

If the partial termination method is used, then we must determine which
deadlocked process (or processes) should be terminated. This determination is
a policy decision, similar to CPU-scheduling decisions. The question is basically
an economic one; we should abort those processes whose termination will incur
the minimum cost. Unfortunately, the term mininuum cost is not a precise one.
Many factors may affect which process is chosen, including;:

1. What the priority of the process is

2. How long the process has computed and how much longer the process
will compute before completing its designated task

3. How many and what type of resources the process has used (for example,
whether the resources are simple to preempt)

4. How many more resources the process needs in order to complete
5. How many processes will need to be terminated

6. Whether the process is interactive or batch
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7.7.2 Resource Preemption

To eliminate deadlocks using resource preemption, we successively preempt
some resources from processes and give these resources to other processes until
the deadlock cycle is broken.

If preemption is required to deal with deadlocks, then three issues need to
be addressed:

1. Selecting a victim. Which resources and which processes are to be
preempted? As in process termination, we must determine the order of
preemption to minimize cost. Cost factors may include such parameters
as the number of resources a deadlocked process is holding and the
amount of time the process has thus far consumed during its execution.

2. Rollback. If we preempt a resource from a process, what should be done
with that process? Clearly, it cannot continue with its normal execution; it
is missing some needed resource. We must roll back the process to some
safe state and restart it from that state.

Since, in general, it is difficult to determine what a safe state is, the
simplest solution is a total rollback: Abort the process and then restart
it. Although it is more effective to roll back the process only as far as
necessary to break the deadlock, this method requires the system to keep
more information about the state of all running processes.

3. Starvation. How do we ensure that starvation will not occur? That is,
how can we guarantee that resources will not always be preempted from
the same process?

In a system where victim selection is based primarily on cost factors,
it may happen that the same process is always picked as a victim. As
a result, this process never completes its designated task, a starvation
situation that must be dealt with in any practical system. Clearly, we
must ensure that a process can be picked as a victim only a (small) finite
number of times. The most common solution is to include the number of
rollbacks in the cost factor.

Summary

A deadlock state occurs when two or more processes are waiting indefinitely
for an event that can be caused only by one of the waiting processes. There are
three principal methods for dealing with deadlocks:

® Use some protocol to prevent or avoid deadlocks, ensuring that the system
will never enter a deadlock state.

& Allow the system to enter a deadlock state, detect it, and then recover.

o Ignore the problem altogether and pretend that deadlocks never occur in

the system.

The third solution is the one used by most operating systems, including UNIX
and Windows.
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A deadlock can occur only if four necessary conditions hold simultanebusly
in the system: mutual exclusion, hold and wait, no preemption, and circular
wait. To prevent deadlocks, we can ensure that at least one of the necessary
conditions never holds.

A method for avoiding deadlocks that is less stringent than the prevention
algorithms requires that the operating system have a priori information on
how each process will utilize system resources. The banker’s algorithm, for
example, requires a priori information about the maximum number of each
resource class that may be requested by each process. Using this information,
we can define a deadlock-avoidance algorithm.

If a system does not employ a protocol to ensure that deadlocks will never
occur, then a detection-and-recovery scheme must be employed. A deadlock-
detection algorithm must be invoked to determine whether a deadlock
has occurred. If a deadlock is detected, the system must recover either by
terminating some of the deadlocked processes or by preempting resources
from some of the deadlocked processes.

Where preemption is used to deal with deadlocks, three issues must be
addressed: selecting a victim, rollback, and starvation. In a system that selects
victims for rollback primarily on the basis of cost factors, starvation may occur,
and the selected process can never complete its designated task.

Finally, researchers have argued that none of the basic approaches alone
is appropriate for the entire spectrum of resource-allocation problems in
operating systems. The basic approaches can be combined, however, allowing
us to select an optimal approach for each class of resources in a system.

Exercises

7.1 Consider the traffic deadlock depicted in Figure 7.9.

a. Show that the four necessary conditions for deadlock indeed hold
in this example.

b. State a simple rule for avoiding deadlocks in this system.

7.2 Consider the deadlock situation that could occur in the dining-
philosophers problem when the philosophers obtain the chopsticks
one at a time. Discuss how the four necessary conditions for deadlock
indeed hold in this setting. Discuss how deadlocks could be avoided by
eliminating any one of the four conditions.

7.3 A possible solution for preventing deadlocks is to have a single, higher-
order resource that must be requested before any other resource. For
example, if multiple threads attempt to access the synchronization
objects A--- E, deadlock is possible. (Such synchronization objects may
include mutexes, semaphores, condition variables, etc.) We can prevent
the deadlock by adding a sixth object F'. Whenever a thread wants to
acquire the synchronization lock for any object A ... E, it must first
acquire the lock for object F. This solution is known as containment:
The locks for objects A--- E are contained within the lock for object F.
Compare this scheme with the circular-wait scheme of Section 7.4.4.
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Figure 7.9 Traffic deadlock for Exercise 7.1.

Compare the circular-wait scheme with the various deadlock-avoidance
schemes (like the banker’s algorithm) with respect to the following
issues:

a. Runtime overheads
b. System throughput

n a real computer system, neither the resources available nor the
demands of processes for resources are consistent over long periods
(months). Resources break or are replaced, new processes come and
go, new resources are bought and added to the system. If deadlock is
controlled by the banker’s algorithm, which of the following changes
can be made safely (without introducing the possibility of deadlock),
and under what circumstances?

a. Increase Available (new resources added).
b. Decrease Available (resource permanently removed from system).

¢. Increase Max for one process (the process needs more resources
than allowed; it may want more).

d. Decrease Max for one process (the process decides it does not need
that many resources).

e. Increase the number of processes.
f. Decrease the number of processes.

Consider a system consisting of four resources of the same type that are
shared by three processes, each of which needs at most two resources.
Show that the system is deadlock free.
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7.7

7.8

7.9

7.10

711

7.12

7.13

Consider a system consisting of m resources ot the same tvpe being
shared by n processes. Resources can be requested and released by
processes only one at a time. Show that the system is deadlock free

it the following two conditions hold:
a. The maximum need of each process is between 1 and 11 resources.
b. The sum of all maximum needs is less than i1 + 1.

Consider the dining-philosophers problem where the chopsticks are
placed at the center of the table and any two of them could be used
by a philosopher. Assume that requests for chopsticks are made one
at a time. Describe a simple rule for determining whether a particular
request could be satisfied without causing deadlock given the current
allocation of chopsticks to philosophers.

Consider the same setting as the previous problem. Assume now that
each philosopher requires three chopsticks to eat and that resource
requests are still issued separately. Describe some simple rules for deter-
mining whether a particular request could be satisfied without causing
deadlock given the current allocation of chopsticks to philosophers.

We can obtain the banker’s algorithm for a single resource type from
the general banker’s algorithm simply by reducing the dimensionality
of the various arrays by 1. Show through an example that the multiple-
resource-type banker’s scheme cannot be implemented by individual
application of the single-resource-type scheme to each resource type.

Consider the following snapshot of a system:

Allocation
ABCD ABCD ABCD
Py 0012 0012 1520
P 1000 1750
P> 1354 2356
P 0632 0652
Py 0014 0656

_Max  Available

Answer the following questions using the banker’s algorithm:
a. What is the content of the matrix Need?
b. Is the system in a safe state?

c. If a request from process P; arrives for (0,4,2,0), can the request
be granted immediately?

What is the optimistic assumption made in the deadlock-detection
algorithm? How could this assumption be violated?

Write a multithreaded program that implements the banker’s algorithm
discussed in Section 7.5.3. Create n threads that request and release
resources from the bank. The banker will grant the request only if it
leaves the system in a safe state. You may write this program using
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either Pthreads or Win32 threads. It is important that access to shared
data is safe from concurrent access. Such data can be safely accessed
using mutex locks, which are available in both the Pthreads and Win32
APL Coverage of mutex locks in both of these libraries is described in
“producer—consumer problem™ project in Chapter 6.

7.14 A single-lane bridge connects the two Vermont villages of North
Tunbridge and South Tunbridge. Farmers in the two villages use this
bridge to deliver their produce to the neighboring town. The bridge can
become deadlocked if both a northbound and a southbound farmer get
on the bridge at the same time (Vermont farmers are stubborn and are
unable to back up.) Using semaphores, design an algorithm that prevents
deadlock. Initially, do not be concerned about starvation (the situation
in which northbound farmers prevent southbound farmers from using
the bridge, or vice versa).

7.15 Modify your solution to Exercise 7.14 so that it is starvation-free.
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FPart Three

The main purpose of a computer system is to execute programs. These
programs, together with the data they access, must be in main memory
(at least partially) during execution.

To improve both the utlization of the CPU and the speed of its
response to users, the computer must keep several processes in
memory. Many memory-management schemes exist, reflecting various
approaches, and the effectiveness of each algorithm depends on the
situation. Selection of a memory-management scheme for a system
depends on many factors, especially on the hardware design of the
system. kach algorithm requires its own hardware support.






8.1

In Chapter 5, we showed how the CPU can be shared by a set of processes. As
a result of CPU scheduling, we can improve both the utilization of the CPU and
the speed of the computer’s response to its users. To realize this increase in
performance, however, we must keep several processes in memory; that is, we
must share memory.

In this chapter, we discuss various ways to manage memory. The memory-
management algorithms vary from a primitive bare-machine approach to
paging and segmentation strategies. Each approach has its own advantages
and disadvantages. Selection of a memory-management method for a specific
system depends on many factors, especially on the hardware design of the
system. As we shall see, many algorithms require hardware support, although
recent designs have closely integrated the hardware and operating system.

CHAPTER O

BJECTIVES

» To provide a detailed description of various ways of organizing memory
hardware.

¢ To discuss various memory-management techniques, including paging
and segmentation.

» To provide a detailed description of the Intel Pentium, which supports both
pure segmentation and segmentation with paging.

Background

As we saw in Chapter 1, memory is central to the operation of a modern
computer system. Memory consists of a large array of words or bytes, each
with its own address. The CPU fetches instructions from memory according
to the value of the program counter. These instructions may cause additional
loading from and storing to specific memory addresses.

A typical instruction-execution cycle, for example, tirst fetches an instruc-
tion from memory. The instruction is then decoded and may cause operands
to be fetched from memory. After the instruction has been executed on the

275









-

8

Chapter 8 Main Memory

the operating system to load users’ programs into users’ memory, to dumip out
those programs in case of errors, to access and modify parameters of system
calls, and so on.

8.1.2 Address Binding

Usually, a program resides on a disk as a binary executable file. To be executed,
the program must be brought into memory and placed within a process.
Depending on the memory management in use, the process may be moved
between disk and memory during its execution. The processes on the disk that
are waiting to be brought into memory for execution form the input queue.

The normal procedure is to select one of the processes in the input queue
and to load that process into memory. As the process is executed, it accesses
instructions and data from memory. Eventually, the process terminates, and its
memory space is declared available

Most systems allow a user process to reside in any part of the physical
memory. Thus, although the address space of the computer starts at 00000,
the first address of the user process need not be 00000. This approach affects
the addresses that the user program can use. In most cases, a user program
will go through several steps—some of which may be optional—before being
executed (Figure 8.3). Addresses may be represented in different ways during
these steps. Addresses in the source program are generally symbolic (such as
count). A compiler will typically bind these symbolic addresses to relocatable
addresses (such as “14 bytes from the beginning of this module™). The linkage
editor or loader will in turn bind the relocatable addresses to absolute addresses
(such as 74014). Each binding is a mapping from one address space to another.

Classically, the binding of instructions and data to memory addresses can
be done at any step along the way:

e Compile time. If you know at compile time where the process will reside
in memory, then absolute code can be generated. For example, if you know
that a user process will reside starting at location R, then the generated
compiler code will start at that location and extend up from there. If, at
some later time, the starting location changes, then it will be necessary
to recompile this code. The MS-DOS .COM-format programs are bound at
compile time.

¢ Load time. If it is not known at compile time where the process will reside
in memory, then the compiler must generate relocatable code. In this case,
final binding is delayed until load time. If the starting address changes, we
need only reload the user code to incorporate this changed value.

¢ Execution time. If the process can be moved during its execution from
one memory segment to another, then binding must be delayed until run
time. Special hardware must be available for this scheme to work, as will
be discussed in Section 8.1.3. Most general-purpose operating systems use
this method.

A major portion of this chapter is devoted to showing how these vari-
ous bindings can be implemented effectively in a computer system and to
discussing appropriate hardware support.
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Figure 8.4 Dynamic relocation using a relocation register.

Sections 8.3 through 8.7. For the time being, we illustrate this mapping with
a simple MMU scheme, which is a generalization of the base-register scheme
described in Section 8.1.1. The base register is now called a relocation register.
The value in the relocation register is added to every address generated by a
user process at the time it is sent to memory (see Figure 8.4). For example,
if the base is at 14000, then an attempt by the user to address location 0 is
dynamically relocated to location 14000; an access to location 346 is mapped
to location 14346. The MS-DOS operating system running on the Intel 80x86
family of processors uses four relocation registers when loading and running
processes.

The user program never sees the real physical addresses. The program can
create a pointer to location 346, store it in memory, manipulate it, and compare it
with other addresses—all as the number 346. Only when it is used as a memory
address (in an indirect load or store, perhaps) is it relocated relative to the base
register. The user program deals with logical addresses. The memory-mapping
hardware converts logical addresses into physical addresses. This form of
execution-time binding was discussed in Section 8.1.2. The final location of
a referenced memory address is not determined until the reference is made.

We now have two different types of addresses: logical addresses (in the
range 0 to max) and physical addresses (in the range R + 0 to R + max for a base
value R). The user generates only logical addresses and thinks that the process
runs in locations O to max. The user program supplies logical addresses; these
logical addresses must be mapped to physical addresses betore they are used.

The concept of a logical address space that is bound to a separate physical
address space is central to proper memory management.

8.1.4 Dynamic Loading

In our discussion so far, the entire program and all data of a process must be in
physical memory for the process to execute. The size of a process is thus limited
to the size of physical memory. To obtain better memory-space utilization, we
can use dynamic loading. With dynamic loading, a routine is not loaded until
it is called. All routines are kept on disk in a relocatable load format. The main
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program is loaded into memory and is executed. When a routine needs to
call another routine, the calling routine first checks to see whether the other
routine has been loaded. If not, the relocatable linking loader is called to load
the desired routine into memory and to update the program’s address tables
to reflect this change. Then control is passed to the newly loaded routine.

The advantage of dynamic loading is that an unused routine is never
loaded. This method is particularly useful when large amounts of code are
needed to handle infrequently occurring cases, such as error routines. In this
case, although the total program size may be large, the portion that is used
(and hence loaded) may be much smaller.

Dynamic loading does not require special support from the operating
system. It is the responsibility of the users to design their programs to take
advantage of such a method. Operating systems may help the programmer,
however, by providing library routines to implement dynamic loading.

8.1.5 Dynamic Linking and Shared Libraries

Figure 8.3 also shows dynamically linked libraries. Some operating systems
support only static linking, in which system language libraries are treated
like any other object module and are combined by the loader into the
binary program image. The concept of dynamic linking is similar to that of
dynamic loading. Here, though, linking, rather than loading, is postponed
until execution time. This feature is usually used with system libraries, such as
language subroutine libraries. Without this facility, each program on a system
must include a copy of its language library (or at least the routines referenced
by the program) in the executable image. This requirement wastes both disk
space and main memory.

With dynamic linking, a stub is included in the image for each library-
routine reference. The stub is a small piece of code that indicates how to locate
the appropriate memory-resident library routine or how to load the library if
the routine is not already present. When the stub is executed, it checks to see
whether the needed routine is already in memory. If not, the program loads
the routine into memory. Either way, the stub replaces itself with the address
of the routine and executes the routine. Thus, the next time that particular
code segment is reached, the library routine is executed directly, incurring no
cost for dynamic linking. Under this scheme, all processes that use a language
library execute only one copy of the library code.

This feature can be extended to library updates (such as bug fixes). A
library may be replaced by a new version, and all programs that reference the
library will automatically use the new version. Without dynamic linking, all
such programs would need to be relinked to gain access to the new library.
So that programs will not accidentally execute new, incompatible versions of
libraries, version information is included in both the program and the library.
More than one version of a library may be loaded into memory, and each
program uses its version information to decide which copy of the library to
use. Minor changes retain the same version number, whereas major changes
increment the version number. Thus, only programs that are compiled with
the new library version are affected by the incompatible changes incorporated
in it. Other programs linked before the new library was installed will continue
using the older library. This system is also known as shared libraries.
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Unlike dynamic loading, dynamic linking generally requires help from the
operating svstem. If the processes in memory are protected from one another,
then the operating system is the only entity that can check to see whether the
needed routine is in another process’s memory space or that can allow multiple
processes to access the same memory addresses. We elaborate on this concept
when we discuss paging in Section 8.4.4.

Swapping

A process must be in memory to be executed. A process, however, can be
swapped temporarily out of memory to a backing store and then brought
back into memory for continued execution. For example, assume a multipro-
gramming environment with a round-robin CPU-scheduling algorithm. When
a quantum expires, the memory manager will start to swap out the process that
just finished and to swap another process into the memory space that has been
freed (Figure 8.5). In the meantime, the CPU scheduler will allocate a time slice
to some other process in memory. When each process finishes its quantum, it
will be swapped with another process. Ideally, the memory manager can swap
processes fast enough that some processes will be in memory, ready to execute,
when the CPU scheduler wants to reschedule the CPU. In addition, the quantum
must be large enough to allow reasonable amounts of computing to be done
between swaps.

A variant of this swapping policy is used for priority-based scheduling
algorithms. If a higher-priority process arrives and wants service, the memory
manager can swap out the lower-priority process and then load and execute
the higher-priority process. When the higher-priority process finishes, the
lower-priority process can be swapped back in and continued. This variant
of swapping is sometimes called roll out, roll in.

. operating |

backing store

main memory

Figure 8.5 Swapping of two processes using a disk as a backing store.
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Normally, a process that is swapped out will be swapped back into the
same memory space it occupied previously. This restriction is dictated by the
method of address binding. If binding is done at assembly or load time, then
the process cannot be easily moved to a different location. If execution-time
binding is being used, however, then a process can be swapped into a different
memory space, because the physical addresses are computed during execution
time.

Swapping requires a backing store. The backing store is commonly a fast
disk. It must be large enough to accommodate copies of all memory images
for all users, and it must provide direct access to these memory images. The
system maintains a ready queue consisting of all processes whose memory
images are on the backing store or in memory and are ready to run. Whenever
the CPU scheduler decides to execute a process, it calls the dispatcher. The
dispatcher checks to see whether the next process in the queue is in memory.
If it is not, and if there is no free memory region, the dispatcher swaps out a
process currently in memory and swaps in the desired process. It then reloads
registers and transfers control to the selected process.

The context-switch time in such a swapping system is fairly high. To get an
idea of the context-switch time, let us assume that the user process is 10 MB in
size and the backing store is a standard hard disk with a transfer rate of 40 MB
per second. The actual transfer of the 10-MB process to or from main memory
takes

10000 KB/40000 KB per second = 1/4 second
= 250 milliseconds.

Assuming that no head seeks are necessary, and assuming an average latency
of 8 milliseconds, the swap time is 258 milliseconds. Since we must both swap
out and swap in, the total swap time is about 516 milliseconds.

For efficient CPU utilization, we want the execution time for each process
to be long relative to the swap time. Thus, in a round-robin CPU-scheduling
algorithm, for example, the time quantum should be substantially larger than
0.516 seconds.

Notice that the major part of the swap time is transfer time. The total
transfer time is directly proportional to the amount of memory swapped. If
we have a computer system with