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CHAPTER 1
The Foundations: Logic and Proofs

SECTION 1.1 Propositional Logic

2. Propositions must have clearly defined truth values, so a proposition must be a declarative sentence with no
free variables.
a) This is not a proposition; it’s a command.
b) This is not a proposition; it’s a question.
c) This is a proposition that is false, as anyone who has been to Maine knows.
d) This is not a proposition; its truth value depends on the value of .
e) This is a proposition that is false.

f) This is not a proposition; its truth value depends on the value of n.

4. a) Jennifer and Teja are not friends.

b) There are not 13 items in a baker’s dozen. (Alternatively: The number of items in a baker’s dozen is not
equal to 13.)

c) Abby sent fewer than 101 text messages yesterday. Alternatively, Abby sent at most 100 text messages
yesterday. Note: The first printing of this edition incorrectly rendered this exercise with “every day” in
place of “yesterday.” That makes it a much harder problem, because the days are quantified, and quantified
propositions are not dealt with until a later section. It would be incorrect to say that the negation in that
case is “Abby sent at most 100 text messages every day.” Rather, a correct negation would be “There exists a
day on which Abby sent at most 100 text messages.” Saying “Abby did not send more than 100 text messages
every day” is somewhat ambiguous—do we mean —V or do we mean V—7?

d) 121 is not a perfect square.

6. a) True, because 288 > 256 and 288 > 128.
b) True, because C has 5 MP resolution compared to B’s 4 MP resolution. Note that only one of these
conditions needs to be met because of the word or.
c) False, because its resolution is not higher (all of the statements would have to be true for the conjunction
to be true).
d) False, because the hypothesis of this conditional statement is true and the conclusion is false.

e) False, because the first part of this biconditional statement is false and the second part is true.

8. a) I did not buy a lottery ticket this week.
b) Either I bought a lottery ticket this week or [in the inclusive sense] I won the million dollar jackpot on
Friday.
c) If I bought a lottery ticket this week, then I won the million dollar jackpot on Friday.
d) I bought a lottery ticket this week and I won the million dollar jackpot on Friday.
e) I bought a lottery ticket this week if and only if T won the million dollar jackpot on Friday.
f) If I did not buy a lottery ticket this week, then I did not win the million dollar jackpot on Friday.
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g) I did not buy a lottery ticket this week, and I did not win the million dollar jackpot on Friday.
h) Either I did not buy a lottery ticket this week, or else I did buy one and won the million dollar jackpot on
Friday.

a) The election is not decided.

b) The election is decided, or the votes have been counted.

¢) The election is not decided, and the votes have been counted.

d) If the votes have been counted, then the election is decided.

e) If the votes have not been counted, then the election is not decided.

f) If the election is not decided, then the votes have not been counted.

g) The election is decided if and only if the votes have been counted.

h) Either the votes have not been counted, or else the election is not decided and the votes have been counted.
Note that we were able to incorporate the parentheses by using the words either and else.

a) If you have the flu, then you miss the final exam.

b) You do not miss the final exam if and only if you pass the course.

c) If you miss the final exam, then you do not pass the course.

d) You have the flu, or miss the final exam, or pass the course.

e) It is either the case that if you have the flu then you do not pass the course or the case that if you miss
the final exam then you do not pass the course (or both, it is understood).

f) Either you have the flu and miss the final exam, or you do not miss the final exam and do pass the course.
a)rA-q  b)pAgAr ¢)r—p d)pA-qgAr  e) (phg)—r B re(qVp)

a) Thisis T < T, which is true.
b) This is T < F, which is false.
c) This is F < F, which is true.
d) This is F < T, which is false.

a) This is F — F, which is true.
b) This is F — F, which is true.
c) Thisis T — F, which is false.
d) This is T — T, which is true.

a) The employer making this request would be happy if the applicant knew both of these languages, so this
is clearly an inclusive or.

b) The restaurant would probably charge extra if the diner wanted both of these items, so this is an exclusive
or.

c¢) If a person happened to have both forms of identification, so much the better, so this is clearly an inclusive
or.

d) This could be argued either way, but the inclusive interpretation seems more appropriate. This phrase
means that faculty members who do not publish papers in research journals are likely to be fired from their
jobs during the probationary period. On the other hand, it may happen that they will be fired even if they
do publish (for example, if their teaching is poor).

a) The necessary condition is the conclusion: If you get promoted, then you wash the boss’s car.

b) If the winds are from the south, then there will be a spring thaw.
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c) The sufficient condition is the hypothesis: If you bought the computer less than a year ago, then the
warranty is good.

d) If Willy cheats, then he gets caught.

e) The “only if” condition is the conclusion: If you access the website, then you must pay a subscription fee.
f) If you know the right people, then you will be elected.

g) If Carol is on a boat, then she gets seasick.

a) If T am to remember to send you the address, then you will have to send me an e-mail message. (This has
been slightly reworded so that the tenses make more sense.)

b) If you were born in the United States, then you are a citizen of this country.

¢) If you keep your textbook, then it will be a useful reference in your future courses. (The word “then” is
understood in English, even if omitted.)

d) If their goaltender plays well, then the Red Wings will win the Stanley Cup.

e) If you get the job, then you had the best credentials.

f) If there is a storm, then the beach erodes.

g) If you log on to the server, then you have a valid password.

h) If you do not begin your climb too late, then you will reach the summit.

a) You will get an A in this course if and only if you learn how to solve discrete mathematics problems.

b) You will be informed if and only if you read the newspaper every day. (It sounds better in this order; it
would be logically equivalent to state this as “You read the newspaper every day if and only if you will be
informed.”)

c¢) It rains if and only if it is a weekend day.

d) You can see the wizard if and only if he is not in.

a) Converse: If T stay home, then it will snow tonight. Contrapositive: If I do not stay at home, then it will
not snow tonight. Inverse: If it does not snow tonight, then I will not stay home.

b) Converse: Whenever I go to the beach, it is a sunny summer day. Contrapositive: Whenever I do not go
to the beach, it is not a sunny summer day. Inverse: Whenever it is not a sunny day, I do not go to the beach.
c) Converse: If I sleep until noon, then I stayed up late. Contrapositive: If I do not sleep until noon, then I
did not stay up late. Inverse: If I don’t stay up late, then I don’t sleep until noon.

A truth table will need 2" rows if there are n variables.
a) 22 =4 b) 23 =38 c) 26 =64 d) 2° =32

To construct the truth table for a compound proposition, we work from the inside out. In each case, we will
show the intermediate steps. In part (d), for example, we first construct the truth tables for p A ¢ and for
pV ¢ and combine them to get the truth table for (p Aq) — (pV ¢). For parts (a) and (b) we have the
following table (column three for part (a), column four for part (b)).

P P p—Tp P TP

T F F F

F T T F

For parts (c) and (d) we have the following table.
p g pvVe phg po(Ve  (PAg — (pV9)

el |
CESRERS
eslies eS|

g |EA
el s B!
HHHH
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For part (e) we have the following table.

p ¢ » qg—-p pegqg (g p) e (peg)

NGNS
e H A
H 3o
HHAH
Hmm ]
H oo

For part (f) we have the following table.

¢ ¢ pegqg P (p < 9 & (< 9

p
T T
T F
F T
F F

S
H A
CRERE
HH s

34. For parts (a) and (b) we have the following table (column two for part (a), column four for part (b)).

p p®p p  pBHP
T F F T
F F T T

For parts (c) and (d) we have the following table (columns five and six).

P ¢ ¢ pdog  pD—g

el N
CRSRCEE
o
HM==M
B
mH e H

For parts (e) and (f) we have the following table (columns five and six). This time we have omitted the column
explicitly showing the negation of ¢. Note that the first is a tautology and the second is a contradiction (see
definitions in Section 1.3).

p ¢ pPqg pd—q (r®qg VvV (p®—q) (r®g A (p®—q)
T T F T T F
T F T F T F
F T T F T F
F F F T T F

36. For parts (a) and (b), we have

p q T pVaq (pvgVr (pVg Ar
T T T T T T
T T F T T F
T F T T T T
T F F T T F
FTT T T T
FTF T T F
FF T F T F
F F F F F F

For parts (c) and (d), we have
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Finally, for parts (e) and (f) we have

p

HREHEHEEE4

38. This time the truth table needs 2* = 16 rows.

40. This statement is true if and only if all three clauses, pV —q, ¢V —r, and rV —p are true. Suppose p, ¢q, and

42.

r are all true. Because each clause has an unnegated variable, each clause is true. Similarly, if p, ¢, and r
are all false, then because each clause has a negated variable, each clause is true. On the other hand, if one of
the variables is true and the other two false, then the clause containing the negation of that variable will be
false, making the entire conjunction false; and similarly, if one of the variables is false and the other two true,
then the clause containing that variable unnegated will be false, again making the entire conjunction false.

a) Since the condition is true, the statement is executed, so z is incremented and now has the value 2.

b) Since the condition is false, the statement is not executed, so z is not incremented and now still has the

value 1.

c¢) Since the condition is true, the statement is executed, so x is incremented and now has the value 2.

d) Since the condition is false, the statement is not executed, so x is not incremented and now still has the

value 1.

p g T pAg (PAg)Vr (PAg AT

T T T T T T

T T F T T F

T F T F T F

T F F F F F

FTT F T F

FTF F F F

F F T F T F

F F F F F F
g r —r pVg (pvVgA-r pAqg  (pAgQV-r
T T F T F T T
T F T T T T T
F T F T F F F
F F T T T F T
T T F T F F F
T F T T T F T
F T F F F F F
F F T F F F T
p g r s p—gqg (p—g—r (p—q)—r)—s
T T T T T T T
T T T F T T F
T T F T T F T
T T F F T F T
T F T T F T T
T F T F F T F
T F F T F T T
T F F F F T F
FTTT T T T
FTTTF T T F
FTFT T F T
FTFF T F T
FFTT T T T
F FTTF T T F
F FF T T F T
F FF F T F T
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e) Since the condition is true when it is encountered (since & = 1), the statement is executed, so z is
incremented and now has the value 2. (It is irrelevant that the condition is now false.)

a) 11000 A (0 1011V 11011) =1 1000A 1 1011 =1 1000
b) (0 1111 A1 0101) v 0 1000 = 0 0101 v 0 1000 = 0 1101
c) (010101 1011) ® 0 1000 = 1 0001 & 0 1000 = 1 1001
d) (11011Vv01010) A (1 0001V 11011)=11011A1 1011 =1 1011

The truth value of “Fred and John are happy” is min(0.8,0.4) = 0.4. The truth value of “Neither Fred nor
John is happy” is min(0.2,0.6) = 0.2, since this statement means “Fred is not happy, and John is not happy,”
and we computed the truth values of the two propositions in this conjunction in Exercise 45.

This cannot be a proposition, because it cannot have a truth value. Indeed, if it were true, then it would
be truly asserting that it is false, a contradiction; on the other hand if it were false, then its assertion that
it is false must be false, so that it would be true—again a contradiction. Thus this string of letters, while
appearing to be a proposition, is in fact meaningless.

No. This is a classical paradox. (We will use the male pronoun in what follows, assuming that we are talking
about males shaving their beards here, and assuming that all men have facial hair. If we restrict ourselves to
beards and allow female barbers, then the barber could be female with no contradiction.) If such a barber
existed, who would shave the barber? If the barber shaved himself, then he would be violating the rule that
he shaves only those people who do not shave themselves. On the other hand, if he does not shave himself,
then the rule says that he must shave himself. Neither is possible, so there can be no such barber.

SECTION 1.2 Applications of Propositional Logic

2.

10.

Recall that p only if ¢ means p — ¢. In this case, if you can see the movie then you must have fulfilled one
of the two requirements. Therefore the statement is m — (e V p). Notice that in everyday life one might
actually say “You can see the movie if you meet one of these conditions,” but logically that is not what the
rules really say.

The condition stated here is that if you use the network, then either you pay the fee or you are a subscriber.
Therefore the proposition in symbols is w — (dV s).

. This is similar to Exercise 2: u — (bsa A g1 A1 A hig) V (bea A g2 Ara A hga).

. a) “But” means “and”: r A —p.

b) “Whenever” means “if”: (r Ap) — q.
¢) Access being denied is the negation of ¢, so we have —r — —q.

d) The hypothesis is a conjunction: (-p A1) — q.

We write these symbolically: u — —a, a — s, =s — —u. Note that we can make all the conclusion true by
making a false, s true, and u false. Therefore if the users cannot access the file system, they can save new
files, and the system is not being upgraded, then all the conditional statements are true. Thus the system is
consistent.
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This system is consistent. We use L, @, N, and B to stand for the basic propositions here, “The file system
is locked,” “New messages will be queued,” “The system is functioning normally,” and “New messages will
be sent to the message buffer,” respectively. Then the given specifications are =L — @, =L < N, -Q — B,
-L — B, and —B. If we want consistency, then we had better have B false in order that =B be true. This
requires that both L and @ be true, by the two conditional statements that have B as their consequence. The
first conditional statement therefore is of the form F — T, which is true. Finally, the biconditional =L < N
can be satisfied by taking N to be false. Thus this set of specifications is consistent. Note that there is just
this one satisfying truth assignment.

This is similar to Example 6, about universities in New Mexico. To search for hiking in West Virginia, we
could enter WEST AND VIRGINIA AND HIKING. If we enter (VIRGINIA AND HIKING) NOT WEST,
then we’ll get websites about hiking in Virginia but not in West Virginia, except for sites that happen to use
the word “west” in a different context (e.g., “Follow the stream west until you come to a clearing”).

a) If the explorer (a woman, so that our pronouns will not get confused here—the cannibals will be male)
encounters a truth-teller, then he will honestly answer “no” to her question. If she encounters a liar, then the
honest answer to her question is “yes,” so he will lie and answer “no.” Thus everybody will answer “no” to
the question, and the explorer will have no way to determine which type of cannibal she is speaking to.

b) There are several possible correct answers. One is the following question: “If I were to ask you if you
always told the truth, would you say that you did?” Then if the cannibal is a truth teller, he will answer yes
(truthfully), while if he is a liar, then, since in fact he would have said that he did tell the truth if questioned,
he will now lie and answer no.

We will translate these conditions into statements in symbolic logic, using j, s, and k for the propositions
that Jasmine, Samir, and Kanti attend, respectively. The first statement is j — —s. The second statement is
s — k. The last statement is —k V j, because“unless” means “or.” (We could also translate this as k — j.
From the comments following Definition 5 in the text, we know that p — ¢ is equivalent to “q unless —p. In
this case p is =y and ¢ is —k.) First, suppose that s is true. Then the second statement tells us that k is
also true, and then the last statement forces j to be true. But now the first statement forces s to be false.
So we conclude that s must be false; Samir cannot attend. On the other hand, if s is false, then the first two
statements are automatically true, not matter what the truth values of k& and j are. If we look at the last
statement, we see that it will be true as long as it is not the case that k is true and j is false. So the only
combinations of friends that make everybody happy are Jasmine and Kanti, or Jasmine alone (or no one!).

If A is a knight, then his statement that both of them are knights is true, and both will be telling the truth.
But that is impossible, because B is asserting otherwise (that A is a knave). If A is a knave, then B’s
assertion is true, so he must be a knight, and A’s assertion is false, as it should be. Thus we conclude that A
is a knave and B is a knight.

We can draw no conclusions. A knight will declare himself to be a knight, telling the truth. A knave will lie
and assert that he is a knight. Since everyone will say “I am a knight,” we can determine nothing.

Suppose that A is the knight. Then because he told the truth, C' is the knave and therefore B is the spy.
In this case both B and C are lying, which is consistent with their identities. To see that this is the only
solution, first note that B cannot be the knight, because of his claim that A is the knight (which would then
have to be a lie). Similarly, C' cannot be the knight, because he would be lying when stating that he is the

Spy.

There is no solution, because neither a knight nor a knave would ever claim to be the knave.
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Suppose that A is the knight. Then B’s statement is true, so he must be the spy, which means that C'’s
statement is also true, but that is impossible because C' would have to be the knave. Therefore A is not the
knight. Next suppose that B is the knight. His true statement forces A to be the spy, which in turn forces
C to be the knave; once more that is impossible because C said something true. The only other possibility
is that C' is the knight, which then forces B to be the spy and A the knave. This works out fine, because A
is lying and B is telling the truth.

Neither A nor B can be the knave, because the knave cannot make the truthful statement that he is not the
spy. Therefore C is the knave, and consequently A is not the spy. It follows that A is the knight and B is
the spy. This works out fine, because A and B are then both telling the truth and C' is lying.

a) We look at the three possibilities of who the innocent men might be. If Smith and Jones are innocent
(and therefore telling the truth), then we get an immediate contradiction, since Smith said that Jones was a
friend of Cooper, but Jones said that he did not even know Cooper. If Jones and Williams are the innocent
truth-tellers, then we again get a contradiction, since Jones says that he did not know Cooper and was out
of town, but Williams says he saw Jones with Cooper (presumably in town, and presumably if we was with
him, then he knew him). Therefore it must be the case that Smith and Williams are telling the truth. Their
statements do not contradict each other. Based on Williams’ statement, we know that Jones is lying, since he
said that he did not know Cooper when in fact he was with him. Therefore Jones is the murderer.

b) This is just like part (a), except that we are not told ahead of time that one of the men is guilty. Can
none of them be guilty? If so, then they are all telling the truth, but this is impossible, because as we just
saw, some of the statements are contradictory. Can more than one of them be guilty? If, for example, they
are all guilty, then their statements give us no information. So that is certainly possible.

This information is enough to determine the entire system. Let each letter stand for the statement that
the person whose name begins with that letter is chatting. Then the given information can be expressed
symbolically as follows: - K - H, R—- -V, -R—-V, A—-— R, V- K K->V, H— A H— K.
Note that we were able to convert all of these statements into conditional statements. In what follows we will
sometimes make use of the contrapositives of these conditional statements as well. First suppose that H is
true. Then it follows that A and K are true, whence it follows that R and V are true. But R implies that
V is false, so we get a contradiction. Therefore H must be false. From this it follows that K is true; whence
V' is true, and therefore R is false, as is A. We can now check that this assignment leads to a true value for
each conditional statement. So we conclude that Kevin and Vijay are chatting but Heather, Randy, and Abby
are not.

Note that Diana’s statement is merely that she didn’t do it.

a) John did it. There are four cases to consider. If Alice is the sole truth-teller, then Carlos did it; but this
means that John is telling the truth, a contradiction. If John is the sole truth-teller, then Diana must be
lying, so she did it, but then Carlos is telling the truth, a contradiction. If Carlos is the sole truth-teller, then
Diana did it, but that makes John truthful, again a contradiction. So the only possibility is that Diana is the
sole truth-teller. This means that John is lying when he denied it, so he did it. Note that in this case both
Alice and Carlos are indeed lying.

b) Again there are four cases to consider. Since Carlos and Diana are making contradictory statements, the
liar must be one of them (we could have used this approach in part (a) as well). Therefore Alice is telling the
truth, so Carlos did it. Note that John and Diana are telling the truth as well here, and it is Carlos who is

lying.

This is often given as an exercise in constraint programming, and it is difficult to solve by hand. The following
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table shows a solution consistent with all the clues, with the houses listed from left to right. Reportedly the

solution is unique.

NATIONALITY Norwegian Italian Englishman  Spaniard Japanese
COLOR Yellow Blue Red White Green
PET Fox Horse Snail Dog Zebra
JOB Diplomat Physician Photographer Violinist Painter
DRINK Water Tea Milk Juice Coffee

In this solution the Japanese man owns the zebra, and the Norwegian drinks water. The logical reasoning
needed to solve the problem is rather extensive, and the reader is referred to the following website containing
the solution to a similar problem: mathforum.org/library/drmath/view/55627 .html.

40. a) Each of p and ¢ is negated and fed to the OR gate. Therefore the output is (—p) V (—q).
b) =(pV ((=p) N q)))

42. We have the inputs come in from the left, in some cases passing through an inverter to form their negations.
Certain pairs of them enter AND gates, and the outputs of these enter the final OR gate.

SECTION 1.3 Propositional Equivalences

2. There are two cases. If p is true, then —(—p) is the negation of a false proposition, hence true. Similarly, if p
is false, then —(—p) is also false. Therefore the two propositions are logically equivalent.

4. a) We construct the relevant truth table and note that the fifth and seventh columns are identical.

p q r pVvg (VgVr qVr  pV(gVr)
TTT T T T T
T TF T T T T
TF T T T T T
TFF T T F T
FTT T T T T
FTF T T T T
F FT F T T T
F FF F F F F

b) Again we construct the relevant truth table and note that the fifth and seventh columns are identical.
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6. We see that the fourth and seventh columns are identical.

p g r pAg @AQAT  gAr  pA(gAT)
TTT T T T T
T TF T F F F
T F T F F F F
T FF F F F F
FTT F F T F
F TF F F F F
F FT F F F F
F FF F F F F
P g DPAg -(pANg) —p ¢  —pV—q
T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

8. We need to negate each part and swap “and” with “or.”

10.

a) Kwame will not take a job in industry and will not go to graduate school.

b) Yoshiko does not know Java or does not know calculus.

c¢) James is not young, or he is not strong.

d) Rita will not move to Oregon and will not move to Washington.

We construct a truth table for each conditional statement and note that the relevant column contains only

T’s. For part (a) we have the following table.

b g
T T
T F
F T

F F

-p

F
F
T
T

pVg  pA(pVa) [-pA (Vg —q
T F T
T F T
T T T
F F T

For part (b) we have the following table. We omit the columns showing p — ¢ and ¢ — r so that the table

will fit on the page.

p g T p—qg—(g—r) g—or (p—q) = (@—=r)]—(p—r)
T T T T T T
T T F F T T
T F T T T F
T F F F F T
F T T T T T
FTF F T F
F F T T T F
F F F T T T
For part (c) we have the following table.

p ¢ p—q pAP—9q PA(p—q)]—q

T T T T T

T F F F T

F T T F T

F F T F T

For part (d) we have the following table. We have omitted some of the intermediate steps to make the table

fit.
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We argue directly by showing that if the hypothesis is true, then so is the conclusion. An alternative approach,
which we show only for part (a), is to use the equivalences listed in the section and work symbolically.

a) Assume the hypothesis is true. Then p is false. Since pV ¢ is true, we conclude that ¢ must be true. Here
is a more “algebraic” solution: [-pA(pVq)] — ¢=-[-pA(pVqg)]Vg=-pV-(pVq)]Vqg=pV-(pVq)Vqg=
(pVq)V—(pVq) = T. The reasons for these logical equivalences are, respectively, Table 7, line 1; De Morgan’s
law; double negation; commutative and associative laws; negation law.

b) We want to show that if the entire hypothesis is true, then the conclusion p — r is true. To do this, we
need only show that if p is true, then r is true. Suppose p is true. Then by the first part of the hypothesis,
we conclude that ¢ is true. It now follows from the second part of the hypothesis that r is true, as desired.
c) Assume the hypothesis is true. Then p is true, and since the second part of the hypothesis is true, we
conclude that ¢ is also true, as desired.

d) Assume the hypothesis is true. Since the first part of the hypothesis is true, we know that either p or ¢
is true. If p is true, then the second part of the hypothesis tells us that r is true; similarly, if ¢ is true, then
the third part of the hypothesis tells us that r is true. Thus in either case we conclude that r is true.

This is not a tautology. It is saying that knowing that the hypothesis of an conditional statement is false
allows us to conclude that the conclusion is also false, and we know that this is not valid reasoning. To show
that it is not a tautology, we need to find truth assignments for p and ¢ that make the entire proposition
false. Since this is possible only if the conclusion if false, we want to let ¢ be true; and since we want the
hypothesis to be true, we must also let p be false. It is easy to check that if, indeed, p is false and ¢ is true,
then the conditional statement is false. Therefore it is not a tautology.

The first of these propositions is true if and only if p and ¢ have the same truth value. The second is true if
and only if either p and ¢ are both true, or p and ¢ are both false. Clearly these two conditions are saying
the same thing.

It is easy to see from the definitions of conditional statement and negation that each of these propositions
is false in the case in which p is true and ¢ is false, and true in the other three cases. Therefore the two
propositions are logically equivalent.

It is easy to see from the definitions of the logical operations involved here that each of these propositions is
true in the cases in which p and ¢ have the same truth value, and false in the cases in which p and ¢ have
opposite truth values. Therefore the two propositions are logically equivalent.

Suppose that (p — ¢q) A (p — r) is true. We want to show that p — (¢ A r) is true, which means that we
want to show that ¢ A r is true whenever p is true. If p is true, since we know that both p — ¢ and p — r
are true from our assumption, we can conclude that ¢ is true and that r is true. Therefore g A r is true, as
desired. Conversely, suppose that p — (¢ A7) is true. We need to show that p — ¢ is true and that p — r is
true, which means that if p is true, then so are ¢ and r. But this follows from p — (¢ A 7).



12

24.

26.

28.

30.

32.

34.

36.

38.

40.

42.

44.

46.

Chapter 1 The Foundations: Logic and Proofs

We determine exactly which rows of the truth table will have T as their entries. Now (p — q) V (p — r) will
be true when either of the conditional statements is true. The conditional statement will be true if p is false,
or if ¢ in one case or r in the other case is true, i.e., when ¢ V r is true, which is precisely when p — (¢ V )
is true. Since the two propositions are true in exactly the same situations, they are logically equivalent.

Applying the third and first equivalences in Table 7, we have -p — (¢ — r) =pV (g —r) =pV gV r.
Applying the first equivalence in Table 7 to ¢ — (p V r) shows that ~¢ V p V r is equivalent to it. But these
are equivalent by the commutative and associative laws.

We know that p «<» ¢ is true precisely when p and ¢ have the same truth value. But this happens precisely
when —p and —¢ have the same truth value, that is, —p < —q.

The conclusion ¢V r will be true in every case except when ¢ and r are both false. But if ¢ and r are both
false, then one of pV g or —p V r is false, because one of p or —p is false. Thus in this case the hypothesis
(pVq) A (—pVr) is false. An conditional statement in which the conclusion is true or the hypothesis is false
is true, and that completes the argument.

We just need to find an assignment of truth values that makes one of these propositions true and the other
false. We can let p be true and the other two variables be false. Then the first statement will be F — F|
which is true, but the second will be F AT, which is false.

We apply the rules stated in the preamble.
a) pA—g  b)pV(gA(rVF))  c) (pV-g) A(qgVT)

If s has any occurrences of A, V, T, or F, then the process of forming the dual will change it. Therefore
s* = s if and only if s is simply one propositional variable (like p). A more difficult question is to determine
when s* will be logically equivalent to s. For example, pVF is logically equivalent to its dual p AT, because
both are logically equivalent to p.

The table is in fact displayed so as to exhibit the duality. The two identity laws are duals of each other, the
two domination laws are duals of each other, etc. The only law not listed with another, the double negation
law, is its own dual, since there are no occurrences of A, V, T, or F to replace.

Following the hint, we easily see that the answer is p A g A —r.

The statement of the problem is really the solution. Each line of the truth table corresponds to exactly one
combination of truth values for the n atomic propositions involved. We can write down a conjunction that
is true precisely in this case, namely the conjunction of all the atomic propositions that are true and the
negations of all the atomic propositions that are false. If we do this for each line of the truth table for which
the value of the compound proposition is to be true, and take the disjunction of the resulting propositions,
then we have the desired proposition in its disjunctive normal form.

Given a compound proposition p, we can, by Exercise 43, write down a proposition ¢ that is logically equivalent
to p and uses only =, A, and V. Now by De Morgan’s law we can get rid of all the V’s by replacing each
occurrence of p; V pa V-V p, with =(=p1 A—=pa A+ A —pp).

We write down the truth table corresponding to the definition.
p a plg

SRR
O
HH 3
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We write down the truth table corresponding to the definition.

p g plag
T T F
T F F
F T F
F F T

a) From the definition (or as seen in the truth table constructed in Exercise 48), p | p is false when p is true
and true when p is false, exactly as —p is; thus the two are logically equivalent.

b) The proposition (p | ¢) | (p | q) is equivalent, by part (a), to =(p | ¢q), which from the definition (or
truth table or Exercise 49) is clearly equivalent to pV q.

¢) By Exercise 45, every compound proposition is logically equivalent to one that uses only — and V. But
by parts (a) and (b) of the present exercise, we can get rid of all the negations and disjunctions by using
NOR’s. Thus every compound proposition can be converted into a logically equivalent compound proposition
involving only NOR’s.

This exercise is similar to Exercise 50. First we can see from the truth tables that (p | p) = (—p) and that
(plp | (@] q)=(pVgq). Then we argue exactly as in part (c) of Exercise 50: by Exercise 45, every
compound proposition is logically equivalent to one that uses only = and V. But by our observations at the
beginning of the present exercise, we can get rid of all the negations and disjunctions by using NAND’s. Thus

every compound proposition can be converted into a logically equivalent compound proposition involving only
NAND’s.

To show that these are not logically equivalent, we need only find one assignment of truth values to p, ¢, and
r for which the truth values of p | (¢ | r) and (p | q) | r differ. One such assignment is T for p and F for ¢
and 7. Then computing from the truth tables (or definitions), we see that p | (¢ | r) is false and (p | q) | r is
true.

To say that p and ¢ are logically equivalent is to say that the truth tables for p and ¢ are identical; similarly,
to say that ¢ and r are logically equivalent is to say that the truth tables for ¢ and r are identical. Clearly
if the truth tables for p and ¢ are identical, and the truth tables for ¢ and r are identical, then the truth
tables for p and r are identical (this is a fundamental axiom of the notion of equality). Therefore p and r are
logically equivalent. (We are assuming—and there is no loss of generality in doing so—that the same atomic
variables appear in all three propositions.)

If we want the first two of these to be true, then p and ¢ must have the same truth value. If ¢ is true, then
the third and fourth expressions will be true, and if r is false, the last expression will be true. So all five of
these disjunctions will be true if we set p and ¢ to be true, and r to be false.

These follow directly from the definitions. An unsatisfiable compound proposition is one that is true for no
assignment of truth values to its variables, which is the same as saying that it is false for every assignment
of truth values, which is the same same saying that its negation is true for every assignment of truth values.
That is the definition of a tautology. Conversely, the negation of a tautology (i.e., a proposition that is true
for every assignment of truth values to its variables) will be false for every assignment of truth values, and
therefore will be unsatisfiable.

In each case we hunt for truth assignments that make all the disjunctions true.
a) Since p occurs in four of the five disjunctions, we can make p true, and then make ¢ false (and make r
and s anything we please). Thus this proposition is satisfiable.
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b) This is satisfiable by, for example, setting p to be false (that takes care of the first, second, and fourth
disjunctions), s to be false (for the third and sixth disjunctions), ¢ to be true (for the fifth disjunction), and
r to be anything.

c) It is not hard to find a satisfying truth assignment, such as p, ¢, and s true, and r false.

Recall that p(i,j,n) asserts that the cell in row ¢, column j contains the number n. Thus \/?l:1 p(i,7,m)
asserts that this cell contains at least one number. To assert that every cell contains at least one number, we
take the conjunction of these statements over all cells: /\?:1 /\?:1 \/Z:1 (i, 4,n).

There are nine blocks, in three rows and three columns. Let r and s index the row and column of the block,
respectively, where we start counting at 0, so that 0 < r <2 and 0 < s < 2. (For example, r = 0,s = 1
corresponds to the block in the first row of blocks and second column of blocks.) The key point is to notice
that the block corresponding to the pair (r,s) contains the cells that are in rows 3r + 1, 3r +2, and 3r 4+ 3
and columns 3s + 1, 3s+ 2, and 3s + 3. Therefore p(3r +4,3s + j,n) asserts that a particular cell in this
block contains the number n, where 1 <47 <3 and 1 < j < 3. If we take the disjunction over all these values
of i and j, then we obtain \/?:1 \/;3-:1 p(3r +i,3s + j,n), asserting that some cell in this block contains the
number n. Because we want this to be true for every number and for every block, we form the triply-indexed
conjunction given in the text.

SECTION 1.4 Predicates and Quantifiers

2.

a) This is true, since there is an a in orange. b) This is false, since there is no a in lemon.

c) This is false, since there is no a in true. d) This is true, since there is an a in false.

. a) Here z is still equal to 0, since the condition is false.

b) Here x is still equal to 1, since the condition is false.

c) This time z is equal to 1 at the end, since the condition is true, so the statement x :=1 is executed.

. The answers given here are not unique, but care must be taken not to confuse nonequivalent sentences. Parts

(c) and (f) are equivalent; and parts (d) and (e) are equivalent. But these two pairs are not equivalent to
each other.

a) Some student in the school has visited North Dakota. (Alternatively, there exists a student in the school
who has visited North Dakota.)

b) Every student in the school has visited North Dakota. (Alternatively, all students in the school have visited
North Dakota.)

c) This is the negation of part (a): No student in the school has visited North Dakota. (Alternatively, there
does not exist a student in the school who has visited North Dakota.)

d) Some student in the school has not visited North Dakota. (Alternatively, there exists a student in the
school who has not visited North Dakota.)

e) This is the negation of part (b): It is not true that every student in the school has visited North Dakota.
(Alternatively, not all students in the school have visited North Dakota.)

f) All students in the school have not visited North Dakota. (This is technically the correct answer, although
common English usage takes this sentence to mean—incorrectly—the answer to part (e). To be perfectly
clear, one could say that every student in this school has failed to visit North Dakota, or simply that no
student has visited North Dakota.)
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. Note that part (b) and part (c) are not the sorts of things one would normally say.

a) If an animal is a rabbit, then that animal hops. (Alternatively, every rabbit hops.)

b) Every animal is a rabbit and hops.

c) There exists an animal such that if it is a rabbit, then it hops. (Note that this is trivially true, satisfied,
for example, by lions, so it is not the sort of thing one would say.)

d) There exists an animal that is a rabbit and hops. (Alternatively, some rabbits hop. Alternatively, some
hopping animals are rabbits.)

a) We assume that this means that one student has all three animals: Jz(C(x) A D(x) A F(z)).

b) Vz(C(z) vV D(z) V F(x)) ¢) Jx(C(z) A F(z) A —D(z))

d) This is the negation of part (a): —=3z(C(x) A D(x) A F(x)).

e) Here the owners of these pets can be different: (3z C(x))A(3x D(x))A(3x F(z)). There is no harm in using
the same dummy variable, but this could also be written, for example, as (32 C(z)) A (3y D(y)) A (32 F(2)).

a) Since 0+ 1 > 2-0, we know that Q(0) is true.

b) Since (—1)+1>2-(—1), we know that Q(—1) is true.

c) Since 1+ 1 % 2-1, we know that Q(1) is false.

d) From part (a) we know that there is at least one x that makes Q(z) true, so Iz Q(x) is true.

e) From part (c) we know that there is at least one x that makes Q(z) false, so Vo Q(z) is false.

f) From part (c) we know that there is at least one x that makes Q(z) false, so Iz -Q(x) is true.

g) From part (a) we know that there is at least one x that makes Q(x) true, so Vx —Q(x) is false.

a) Since (—1)% = —1, this is true.

b) Since (3)* < (1)?, this is true.

c) Since (—)? = ((—=1)z)? = (—1)%2? = 22, we know that Va((—2z)? = 2?) is true.

d) Twice a positive number is larger than the number, but this inequality is not true for negative numbers
or 0. Therefore Vz(2z > z) is false.

a) true (z = v/2) b) false (v/—1 is not a real number)
c¢) true (the left-hand side is always at least 2) d) false (not true for x =1 or = =0)

Existential quantifiers are like disjunctions, and universal quantifiers are like conjunctions. See Examples 11
and 16.

a) We want to assert that P(x) is true for some x in the domain, so either P(—2) is true or P(—1) is true
or P(0) is true or P(1) is true or P(2) is true. Thus the answer is P(—2)V P(—1)V P(0)V P(1) Vv P(2). The
other parts of this exercise are similar. Note that by De Morgan’s laws, the expression in part (c) is logically
equivalent to the expression in part (f), and the expression in part (d) is logically equivalent to the expression

in part (e).

b) P(—2) AP(—1) A P(0) A P(1) A P(2)

c) ~P(=2)V=P(=1) v -P(0) vV =P(1) vV -P(2)
d) ~P(=2) A=P(=1) A=P(0) A=P(1) A =P(2)

e) This is just the negation of part (a): —(P
f) This is just the negation of part (b): —(P

(—2)V P(—1) vV P(0) V P(1) V P(2))
(—=2) A P(=1) A P(0) A P(1) A P(2))

Existential quantifiers are like disjunctions, and universal quantifiers are like conjunctions. See Examples 11
and 16.
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a) We want to assert that P(x) is true for some z in the domain, so either P(—5) is true or P(—3) is true or
P(-1) is true or P(1) is true or P(3) is true or P(5) is true. Thus the answer is P(—5)V P(—=3) V P(—1) vV
P(1)V P(3)Vv P(5).

b) P(=5) A P(=3) A P(~1) A P(1) A P(3) A P(5)

c) The formal translation is as follows: ((—=5# 1) = P(=5))A((—=3#1) = P(=3))A((-1#1) — P(-1)) A
(1#£1)—=PA)A((B#1)— PB))A((5#1) — P(5)). However, since the hypothesis x # 1 is false when
x is 1 and true when z is anything other than 1, we have more simply P(—5) A P(—3) AP(—1) AP(3) A P(5).
d) The formal translation is as follows: ((—=5 > 0)AP(=5))V((—3 > 0)AP(=3))V((-1 > 0)AP(-1))Vv((1>
0O)AP(1)V((B>0)AP(3))V((5>0)AP(5)). Since only three of the 2’s in the domain meet the condition,
the answer is equivalent to P(1) V P(3) VvV P(5).

e) For the second part we again restrict the domain: (—P(—5)V—-P(-=3)V-P(—1)V-P(1)V-P(3)V-P(5))A
(P(—1) A P(—=3) A P(—5)). This is equivalent to (=P(1) vV =P (3) vV =P(5)) A (P(—1) A P(=3) A P(-5)).

Many answer are possible in each case.

a) A domain consisting of a few adults in certain parts of India would make this true. If the domain were all
residents of the United States, then this is certainly false.

b) If the domain is all residents of the United States, then this is true. If the domain is the set of pupils in a
first grade class, it is false.

c) If the domain consists of all the United States Presidents whose last name is Bush, then the statement is
true. If the domain consists of all United States Presidents, then the statement is false.

d) If the domain were all residents of the United States, then this is certainly true. If the domain consists of
all babies born in the last five minutes, one would expect the statement to be false (it’s not even clear that
these babies “know” their mothers yet).

In order to do the translation the second way, we let C(z) be the propositional function “z is in your class.”
Note that for the second way, we always want to use conditional statements with universal quantifiers and
conjunctions with existential quantifiers.

a) Let P(x) be “z has a cellular phone.” Then we have Vx P(x) the first way, or Vz(C(z) — P(x)) the
second way.

b) Let F(z) be “z has seen a foreign movie.” Then we have 3z F'(x) the first way, or Jx(C(z) A F(x)) the
second way.

c) Let S(z) be “a can swim.” Then we have 3z =S (z) the first way, or Jx(C(x) A =S(x)) the second way.
d) Let Q(x) be “z can solve quadratic equations.” Then we have Va Q(x) the first way, or Vz(C(z) — Q(z))
the second way.

e) Let R(x) be “x wants to be rich.” Then we have 3z —R(z) the first way, or 32(C(x) A—R(z)) the second
way.

In all of these, we will let Y (z) be the propositional function that z is in your school or class, as appropriate.
a) If we let U(x) be “z has visited Uzbekistan,” then we have 3z U(z) if the domain is just your schoolmates,
or 3z(Y(z) AU(x)) if the domain is all people. If we let V(z,y) mean that person z has visited country vy,
then we can rewrite this last one as 3z (Y (z) A V(z, Uzbekistan)).

b) If we let C(z) and P(x) be the propositional functions asserting that = has studied calculus and C++,
respectively, then we have Va(C(z)AP(z)) if the domain is just your schoolmates, or Va (Y (z) — (C(x)AP(x)))
if the domain is all people. If we let S(x,y) mean that person x has studied subject y, then we can rewrite
this last one as Va (Y (x) — (S(z, calculus) A S(z, C++))).

c) If we let B(z) and M (x) be the propositional functions asserting that = owns a bicycle and a motorcycle,
respectively, then we have Va(—(B(x)AM (x))) if the domain is just your schoolmates, or V(Y () — —(B(z)A
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M (z))) if the domain is all people. Note that “no one” became “for all ... not.” If we let O(z,y) mean that
person x owns item y, then we can rewrite this last one as Vz (Y (x) — —(O(z, bicycle) A O(z, motorcycle))).
d) If we let H(z) be “z is happy,” then we have Jz—H(x) if the domain is just your schoolmates, or
Jx(Y (z) A—H(z)) if the domain is all people. If we let E(x,y) mean that person z is in mental state y, then
we can rewrite this last one as (Y (z) A =E(z, happy)).

e) If we let T'(z) be “z was born in the twentieth century,” then we have Vz T'(x) if the domain is just your
schoolmates, or V(Y (x) — T'(x)) if the domain is all people. If we let B(x,y) mean that person = was born
in the y* century, then we can rewrite this last one as Vz(Y (z) — B(z,20)).

Let R(x) be “zx is in the correct place”; let E(x) be “x is in excellent condition”; let T'(z) be “x is a [or
your| tool”; and let the domain of discourse be all things.

a) There exists something not in the correct place: Iz —R(x).

b) If something is a tool, then it is in the correct place place and in excellent condition: Vz (T'(z) — (R(x) A
E(x))).

c) Vz (R(z) AN E(x))

d) This is saying that everything fails to satisfy the condition: Vz =(R(z) A E(z)).

e) There exists a tool with this property: 3z (T(x) A ~R(z) A E(x)).

a) P(1,3)VP(2,3)VP(3,3)  b) P(1,1)AP(1,2)AP(1,3)
) =P(2,1)V-P(2,2)V-P(2,3)  d) ~P(1,2) A~P(2,2) A —P(3,2)

In each case we need to specify some propositional functions (predicates) and identify the domain of discourse.
a) Let F(x) be “z has fleas,” and let the domain of discourse be dogs. Our original statement is Va F'(x).
Its negation is 3z —F(z). In English this reads “There is a dog that does not have fleas.”

b) Let H(zx) be “x can add,” where the domain of discourse is horses. Then our original statement is 3z H (z).
Its negation is Vo —H (z). In English this is rendered most simply as “No horse can add.”

c) Let C(x) be “x can climb,” and let the domain of discourse be koalas. Our original statement is Vz C(z).
Its negation is 3z —-C(z). In English this reads “There is a koala that cannot climb.”

d) Let F(x) be “x can speak French,” and let the domain of discourse be monkeys. Our original statement
is =3z F(x) or Yo —F(x). Its negation is 3z F'(z). In English this reads “There is a monkey that can speak
French.”

e) Let S(z) be “x can swim” and let C(x) be “x can catch fish,” where the domain of discourse is pigs. Then
our original statement is 3z (S(z) A C(z)). Its negation is Va —(S(z) A C(z)), which could also be written
Vo (-S(x) vV -C(x)) by De Morgan’s law. In English this is “No pig can both swim and catch fish,” or “Every
pig either is unable to swim or is unable to catch fish.”

a) Let S(z) be “a obeys the speed limit,” where the domain of discourse is drivers. The original statement
is 3z —S(x), the negation is Va S(x), “All drivers obey the speed limit.”

b) Let S(x) be “x is serious,” where the domain of discourse is Swedish movies. The original statement is
Vo S(z), the negation is Iz —S5(x), “Some Swedish movies are not serious.”

c) Let S(x) be “x can keep a secret,” where the domain of discourse is people. The original statement is
—3Jx S(x), the negation is 3z S(z), “Some people can keep a secret.”

d) Let A(x) be “x has a good attitude,” where the domain of discourse is people in this class. The original
statement is Jx —A(x), the negation is Vx A(x), “Everyone in this class has a good attitude.”

a) Since 12 = 1, this statement is false; x = 1 is a counterexample. So is = 0 (these are the only two
counterexamples).
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b) There are two counterexamples: z = V2 and z = —v/2.

c¢) There is one counterexample: z = 0.

a) Some system is open. b) Every system is either malfunctioning or in a diagnostic state.

¢) Some system is open, or some system is in a diagnostic state. d) Some system is unavailable.

e) No system is working. (We could also say “Every system is not working,” as long as we understood that
this is different from “Not every system is working.”)

There are many ways to write these, depending on what we use for predicates.

a) Let F(z) be “There is less than x megabytes free on the hard disk,” with the domain of discourse being
positive numbers, and let W (z) be “User x is sent a warning message.” Then we have F(30) — Vo W (x).
b) Let O(z) be “Directory x can be opened,” let C(x) be “File x can be closed,” and let E be the proposition
“System errors have been detected.” Then we have E — ((Vz —=O(z)) A (Vx —C(x))).

c) Let B be the proposition “The file system can be backed up,” and let L(z) be “User z is currently logged
on.” Then we have (3z L(x)) — —B.

d) Let D(z) be “Product = can be delivered,” and let M (x) be “There are at least  megabytes of mem-
ory available” and S(z) be “The connection speed is at least z kilobits per second,” where the domain of
discourse for the last two propositional functions are positive numbers. Then we have (M (8) A S(56)) —
D(video on demand).

There are many ways to write these, depending on what we use for predicates.

a) Let A(x) be “User = has access to an electronic mailbox.” Then we have Vz A(x).

b) Let A(z,y) be “Group member x can access resource y,” and let S(x,y) be “System z is in state y.”
Then we have S(file system, locked) — Va A(x, system mailbox).

c) Let S(z,y) be “System z is in state y.” Recalling that “only if” indicates a necessary condition, we have
S(firewall, diagnostic) — S(proxy server, diagnostic).

d) Let T(xz) be “The throughput is at least = kbps,” where the domain of discourse is positive numbers,
let M(x,y) be “Resource z is in mode y,” and let S(x,y) be “Router z is in state y.” Then we have
(T'(100) A =T'(500) A =M (proxy server, diagnostic)) — 3z S(z,normal).

We want propositional functions P and @ that are sometimes, but not always, true (so that the second
biconditional is F < F and hence true), but such that there is an « making one true and the other false. For
example, we can take P(x) to mean that x is an even number (a multiple of 2) and Q(z) to mean that x is
a multiple of 3. Then an example like =4 or z =9 shows that Vz(P(z) < Q(z)) is false.

a) There are two cases. If A is true, then (VaP(z))V A is true, and since P(z)V A is true for all z,
Va(P(x)V A) is also true. Thus both sides of the logical equivalence are true (hence equivalent). Now suppose
that A is false. If P(z) is true for all z, then the left-hand side is true. Furthermore, the right-hand side is
also true (since P(z) V A is true for all ). On the other hand, if P(x) is false for some z, then both sides
are false. Therefore again the two sides are logically equivalent.

b) There are two cases. If A is true, then (JzP(x))V A is true, and since P(x) V A is true for some (really
all) z, Jz(P(x) Vv A) is also true. Thus both sides of the logical equivalence are true (hence equivalent). Now
suppose that A is false. If P(z) is true for at least one x, then the left-hand side is true. Furthermore, the
right-hand side is also true (since P(x)V A is true for that ). On the other hand, if P(x) is false for all x,
then both sides are false. Therefore again the two sides are logically equivalent.

a) There are two cases. If A is false, then both sides of the equivalence are true, because a conditional
statement with a false hypothesis is true. If A is true, then A — P(x) is equivalent to P(x) for each x, so
the left-hand side is equivalent to Va P(z), which is equivalent to the right-hand side.
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b) There are two cases. If A is false, then both sides of the equivalence are true, because a conditional
statement with a false hypothesis is true (and we are assuming that the domain is nonempty). If A is true,
then A — P(z) is equivalent to P(x) for each z, so the left-hand side is equivalent to 3z P(z), which is
equivalent to the right-hand side.

It is enough to find a counterexample. It is intuitively clear that the first proposition is asserting much more
than the second. It is saying that one of the two predicates, P or @, is universally true; whereas the second
proposition is simply saying that for every x either P(z) or Q(z) holds, but which it is may well depend
on x. As a simple counterexample, let P(z) be the statement that x is odd, and let Q(z) be the statement
that = is even. Let the domain of discourse be the positive integers. The second proposition is true, since
every positive integer is either odd or even. But the first proposition is false, since it is neither the case that
all positive integers are odd nor the case that all of them are even.

a) This is false, since there are many values of x that make = > 1 true.

2 =1 true.

b) This is false, since there are two values of x that make z
c¢) This is true, since by algebra we see that the unique solution to the equation is z = 3.

d) This is false, since there are no values of x that make z = x + 1 true.

There are only three cases in which Jz!P(z) is true, so we form the disjunction of these three cases. The
answer is thus (P(1) A =P(2) A—=P(3)) V (-P(1) A P(2) A=P(3)) V (=P(1) A=P(2) A P(3)).

A Prolog query returns a yes/no answer if there are no variables in the query, and it returns the values that
make the query true if there are.

a) None of the facts was that Kevin was enrolled in EE 222. So the response is no.

b) One of the facts was that Kiko was enrolled in Math 273. So the response is yes.

c¢) Prolog returns the names of the courses for which Grossman is the instructor, namely just cs301.

d) Prolog returns the names of the instructor for CS 301, namely grossman.

e) Prolog returns the names of the instructors teaching any course that Kevin is enrolled in, namely chan,
since Chan is the instructor in Math 273, the only course Kevin is enrolled in.

Following the idea and syntax of Example 28, we have the following rule:

grandfather (X,Y) :- father(X,Z), father(Z,Y); father(X,Z), mother(Z,Y).

Note that we used the comma to mean “and” and the semicolon to mean “or.” For X to be the grandfather
of Y, X must be either Y’s father’s father or Y’s mother’s father.

a) Va(P(r) — Q(z))  b) 3z(R(x) A -Q(z)) c) 3u(R(z) A =P (z))

d) Yes. The unsatisfactory excuse guaranteed by part (b) cannot be a clear explanation by part (a).

a) Vz(P(z) — =5(z)) b) Vz(R(z) — S(x))  ¢) Va(Q(z) — P(x)) d) Vz(Q(z) — ~R(x))
e) Yes. If x is one of my poultry, then he is a duck (by part (c)), hence not willing to waltz (part (a)). Since
officers are always willing to waltz (part (b)), x is not an officer.
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SECTION 1.5 Nested Quantifiers

2.

10.

12.

14.

a) There exists a real number z such that for every real number y, xzy = y. This is asserting the existence
of a multiplicative identity for the real numbers, and the statement is true, since we can take = = 1.

b) For every real number x and real number y, if x is nonnegative and y is negative, then the difference
x —y is positive. Or, more simply, a nonnegative number minus a negative number is positive (which is true).
c¢) For every real number = and real number y, there exists a real number z such that z =y + z. This is a
true statement, since we can take z = x — y in each case.

. a) Some student in your class has taken some computer science course.

b) There is a student in your class who has taken every computer science course.

¢) Every student in your class has taken at least one computer science course.

d) There is a computer science course that every student in your class has taken.

e) Every computer science course has been taken by at least one student in your class.

f) Every student in your class has taken every computer science course.

. a) Randy Goldberg is enrolled in CS 252.

b) Someone is enrolled in Math 695.

c¢) Carol Sitea is enrolled in some course.

d) Some student is enrolled simultaneously in Math 222 and CS 252.

e) There exist two distinct people, the second of whom is enrolled in every course that the first is enrolled in.

f) There exist two distinct people enrolled in exactly the same courses.

. a) JxdyQ(x,y)

b) This is the negation of part (a), and so could be written either —3xIyQ(x,y) or VaVy—Q(z,y).

¢) We assume from the wording that the statement means that the same person appeared on both shows:
J2(Q(x, Jeopardy) A Q(z, Wheel of Fortune))

d) Vy3aQ(z,y) ) 3w1325(Q(a1, Jeopardy) A Q(xa, Jeopardy) A z1 # 2)

a) VzF(z,Fred) b) VyF (Evelyn,y) c) VoIyF(z,y) d) -JaVyF(z,y) e) VydzF(z,y)

f) —3z(F(x,Fred) A F(z, Jerry))

g) Jy13y2(F(Nancy, y1) A F(Nancy, y2) Ayr # y2 A Vy(F(Nancy,y) — (y =1 Vy = 42)))

h) Jy(VeF(x,y) A\Vz(VzF(z,2) — 2z =y)) i) ~3aF(z, x)

J) 3xy(x #yANF(z,y) AV2((F(z,2) Nz # z) - z=1y)) (We do not assume that this sentence is asserting
that this person can or cannot fool her/himself.)

The answers to this exercise are not unique; there are many ways of expressing the same propositions sym-
bolically. Note that C(z,y) and C(y,x) say the same thing.

a) —I(Jerry) b) —C(Rachel, Chelsea) ¢) —C(Jan, Sharon) d) -3z C(z,Bob)

e) Va(x # Joseph « C(z, Sanjay)) £) Jz—I(z) g) ~VzI(x) (same as (f))

h) 3aVy(z =y < I(y)) i) Javy(z #y < I(y)  J) Va((z) — Fy(z # y A C(2,y)))

k) Jz(I(z) A\Vy(z #y — ~C(,y))) 1) Jady(z #y A ~C(z,y)) m) JzVy C(z,y)

n) Jxdy(x # y AVz—(C(x,2) ACl(y, 2))) 0) JxTy(x £y AV2(C(x,2) V C(y, 2)))

The answers to this exercise are not unique; there are many ways of expressing the same propositions sym-
bolically. Our domain of discourse for persons here consists of people in this class. We need to make up a
predicate in each case.
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a) Let S(z,y) mean that person x can speak language y. Then our statement is 3z S(z, Hindi).

b) Let P(x,y) mean that person x plays sport y. Then our statement is Va3y P(z,y).

c) Let V(z,y) mean that person x has visited state y. Then our statement is Jz(V(z, Alaska) A =V (z,
Hawaii)).

d) Let L(x,y) mean that person x has learned programming language y. Then our statement is VaTy L(x, y).
e) Let T(x,y) mean that person x has taken course y, and let O(y,z) mean that course y is offered by
department z. Then our statement is Jx32Vy(O(y, z) — T(z,y)).

f) Let G(x,y) mean that persons z and y grew up in the same town. Then our statement is JaxTIy(z #
yAG(x,y) AN\V2(G(z,2) = (x =y Va=2))).

g) Let C(z,y,z) mean that persons = and y have chatted with each other in chat group z. Then our
statement is VaIydz(z £y A C(z,y,2)).

We let P(s,c,m) be the statement that student s has class standing ¢ and is majoring in m. The variable
s ranges over students in the class, the variable ¢ ranges over the four class standings, and the variable m
ranges over all possible majors.

a) The proposition is IsImP(s, junior,m). It is true from the given information.

b) The proposition is Vs3cP(s, ¢,computer science). This is false, since there are some mathematics majors.
c) The proposition is IsIeIm(P(s,c,m) A (¢ # junior) A (m # mathematics)). This is true, since there is a
sophomore majoring in computer science.

d) The proposition is Vs(3cP(s, ¢, computer science) V 3mP(s,sophomore,m)). This is false, since there is a
freshman mathematics major.

e) The proposition is ImVc3sP(s,c,m). This is false. It cannot be that m is mathematics, since there is no
senior mathematics major, and it cannot be that m is computer science, since there is no freshman computer
science major. Nor, of course, can m be any other major.

a) Vf(H(f) — 3cA(c)), where A(z) means that console x is accessible, and H(x) means that fault condition
z is happening

b) (Yudam (A(m) A S(u,m))) — Yu R(u), where A(x) means that the archive contains message x, S(x,y)
means that user = sent message y, and R(z) means that the e-mail address of user = can be retrieved

c) (VYbam D(m,b)) <« Ip—-C(p), where D(x,y) means that mechanism = can detect breach y, and C(x)
means that process x has been compromised

d) VaVy (x #y — Ip3q (p # ¢AC(p,z,y)AC(q, z,y))), where C(p, x,y) means that path p connects endpoint
x to endpoint y

e) Yz ((Vu K(x,u)) <> = SysAdm), where K (x,y) means that person = knows the password of user y

a) VaVy((z < 0) A (y < 0) — (zy > 0)) b) VaVy((x > 0) A (y > 0) — ((z+y)/2 > 0))

¢) What does “necessarily” mean in this context? The best explanation is to assert that a certain universal
conditional statement is not true. So we have =VaVy((x < 0) A (y < 0) — (x —y < 0)). Note that we do
not want to put the negation symbol inside (it is not true that the difference of two negative integers is never
negative), nor do we want to negate just the conclusion (it is not true that the sum is always nonnegative).
We could rewrite our solution by passing the negation inside, obtaining Jz3y((z < 0) A (y < 0)A(x—y > 0)).
d) VaVy (lz +y| < [z] +[y[)

JxVaVbVe ((x > 0) Az # a® + b% + ¢2), where the domain of discourse consists of all integers

a) There exists an additive identity for the real numbers—a number that when added to every number does
not change its value.
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b) A nonnegative number minus a negative number is positive.
¢) The difference of two nonpositive numbers is not necessarily nonpositive.

d) The product of two numbers is nonzero if and only if both factors are nonzero.

a) This is false, since 1 +1#1—1. b) This is true, since 24+0=2—0.

c) This is false, since there are many values of y for which 1+y #1—y.

d) This is false, since the equation x + 2 = x — 2 has no solution.

e) This is true, since we can take x =y = 0. f) This is true, since we can take y = 0 for each x.
g) This is true, since we can take y = 0. h) This is false, since part (d) was false.

i) This is certainly false.

a) true (let y = 22) b) false (no such y exists if x is negative) c) true (let x =0)

d) false (the commutative law for addition always holds) e) true (let y =1/x)

f) false (the reciprocal of y depends on y—there is not one x that works for all y) g) true (let y=1—x)
h) false (this system of equations is inconsistent)

i) false (this system has only one solution; if = 0, for example, then no y satisfies y =2A -y =1)

j) true (let z = (x +y)/2)

We need to use the transformations shown in Table 2 of Section 1.4, replacing —V by 3—, and replacing —3
by V—. In other words, we push all the negation symbols inside the quantifiers, changing the sense of the
quantifiers as we do so, because of the equivalences in Table 2 of Section 1.4. In addition, we need to use De
Morgan’s laws (Section 1.3) to change the negation of a conjunction to the disjunction of the negations and to
change the negation of a disjunction to the conjunction of the negations. We also use the fact that =——p = p.

a) Vyve—-P(z,y)  b) JaVy-P(z,y)  ¢) Yy(=Q(y) V Iz R(z,y))
d) Vy(Vz —R(z,y) Az —-S(x,y)) e) Yy(FaVz -T(z,y,2) AVeIz -U(x,y, 2))

As we push the negation symbol toward the inside, each quantifier it passes must change its type. For logical
connectives we either use De Morgan’s laws or recall that —(p — ¢) = pA =g (Table 7 in Section 1.3) and that
—(p < q) = —p < q (Exercise 21 in Section 1.3).

a) -V T(x,y, z) = Vz=VyVa T(x,y, 2)
=VzAy—-Va T (z,y,2)
= Vzydx T (z,y, 2)

b) =(Fz3y P(z,y) ANVaVy Q(x,y)) = ~FxIy P(z,y) V ~VaVy Q(x, y)
=Va—Jy P(z,y) V Jz—Vy Q(z,y)
=VaVy -P(z,y) V 3zIy - Q(z,y)

d) =VyIz3z (T(z,y,2) V Q(x,y)) = Jy—Fz3z (T(
= JyVe—-3z (T(x,
= JyVavz -~ (T(
= IyVavz (-T(
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The logical expression is asserting that the domain consists of at most two members. (It is saying that
whenever you have two unequal objects, any object has to be one of those two. Note that this is vacuously
true for domains with one element.) Therefore any domain having one or two members will make it true (such
as the female members of the United States Supreme Court in 2005), and any domain with more than two
members will make it false (such as all members of the United States Supreme Court in 2005).

In each case we need to specify some predicates and identify the domain of discourse.

a) Let L(z,y) mean that person = has lost y dollars playing the lottery. The original statement is then
—3x3Jy(y > 1000 A L(z,y)). Its negation of course is JzIy(y > 1000 A L(x,y)); someone has lost more than
$1000 playing the lottery.

b) Let C(x,y) mean that person x has chatted with person y. The given statement is JxTJy(y # © AVz(z #
x — (z =y < C(z,2)))). The negation is therefore VaVy(y #  — Jz(z # z A=(z =y « C(z,2)))). In
English, everybody in this class has either chatted with no one else or has chatted with two or more others.
c) Let E(x,y) mean that person x has sent e-mail to person y. The given statement is ~JzxIyIz(y # z Az #
yAx £ zAVw(w # z — (E(z,w) < (w=yVw=z)))). The negation is obviously JxIyIz(y # z A x #
yANx #zANVw(w # 2 — (E(z,w) < (w =y Vw = z)))). In English, some student in this class has sent
e-mail to exactly two other students in this class.

d) Let S(z,y) mean that student = has solved exercise y. The statement is JxVy S(x,y). The negation is
VaIy —S(x,y). In English, for every student in this class, there is some exercise that he or she has not solved.
(One could also interpret the given statement as asserting that for every exercise, there exists a student—
perhaps a different one for each exercise—who has solved it. In that case the order of the quantifiers would
be reversed. Word order in English sometimes makes for a little ambiguity.)

e) Let S(x,y) mean that student = has solved exercise y, and let B(y, z) mean that exercise y is in section z
of the book. The statement is =3zVz3y(B(y, z) AS(z,y)). The negation is of course IzVz3Iy(B(y, 2) AS(z,y)).
In English, some student has solved at least one exercise in every section of this book.

a) In English, the negation is “Some student in this class does not like mathematics.” With the obvious
propositional function, this is Jx—L(x).

b) In English, the negation is “Every student in this class has seen a computer.” With the obvious propositional
function, this is VaS(x).

¢) In English, the negation is “For every student in this class, there is a mathematics course that this student
has not taken.” With the obvious propositional function, this is Vz3e—T(z,¢).

d) As in Exercise 15f, let P(z,y) be “Room z is in building y,” and let Q(z,z) be “Student z has been
in room z.” Then the original statement is JxVy3z (P(z, y) A Q(z, z)) . To form the negation, we change all
the quantifiers and put the negation on the inside, then apply De Morgan’s law. The negation is therefore
VrIyVz (—|P(z, y)V-Q(x, z)) , which is also equivalent to Vax3yVz (P(z, y) — —Q(z, z)) . In English, this could
be read, “For every student there is a building such that for every room in that building, the student has not
been in that room.”

a) There are many counterexamples. If z = 2, then there is no y among the integers such that 2 = 1/y,
since the only solution of this equation is y = 1/2. Even if we were working in the domain of real numbers,
x = 0 would provide a counterexample, since 0 = 1/y for no real number y.

b) We can rewrite y? —x < 100 as y? < 100 + x. Since squares can never be negative, no such y exists if =
is, say, —200. This z provides a counterexample.

¢) This is not true, since sixth powers are both squares and cubes. Trivial counterexamples would include
z=y=0and x =y = 1, but we can also take something like = 27 and y = 9, since 272 = 36 = 93,
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The distributive law is just the statement that z(y+z) = xy+xzz for all real numbers. Therefore the expression
we want is VaVyVz (x(y + z) = zy + 2z), where the quantifiers are assumed to range over (i.e., the domain of
discourse is) the real numbers.

We want to say that for each triple of coefficients (the a, b, and ¢ in the expression az? + bz + ¢, where we
insist that a # 0 so that this actually is quadratic), there are at most two values of x making that expression
equal to 0. The domain here is all real numbers. We write YaVbVc(a # 0 — VaVooVaos(az? + bry + ¢ =
0Aar3 +brg+c=0Aar3 +brs+c=0)— (r1 =22 V21 =123V T2 =13)).

This statement says that there is a number that is less than or equal to all squares.

a) This is false, since no matter how small a positive number 2 we might choose, if we let y = \/x/2, then
x = 2y?, and it will not be true that z < y2.
b) This is true, since we can take z = —1, for example.

c¢) This is true, since we can take x = —1, for example.

We need to show that each of these propositions implies the other. Suppose that VaP(z)VVzQ(x) is true. We
want to show that VzVy(P(z)V Q(y)) is true. By our hypothesis, one of two things must be true. Either P is
universally true, or @ is universally true. In the first case, VaVy(P(x)VQ(y)) is true, since the first expression
in the disjunction is true, no matter what = and y are; and in the second case, VaVy(P(z) V Q(y)) is also
true, since now the second expression in the disjunction is true, no matter what = and y are. Next we need
to prove the converse. So suppose that VaVy(P(z) V Q(y)) is true. We want to show that VaP(z) V VzQ(x)
is true. If VxP(z) is true, then we are done. Otherwise, P(xo) must be false for some z( in the domain of
discourse. For this xg, then, the hypothesis tells us that P(zp) V Q(y) is true, no matter what y is. Since
P(xg) is false, it must be the case that Q(y) is true for each y. In other words, YyQ(y) is true, or, to change
the name of the meaningless quantified variable, Yz Q(z) is true. This certainly implies that VzP(x) VVzQ(x)
is true, as desired.

a) By Exercises 45 and 46b in Section 1.4, we can simply bring the existential quantifier outside: Jz(P(x) vV
Qz) Vv A).

b) By Exercise 48 of the current section, the expression inside the parentheses is logically equivalent to
VavVy(P(z) V Q(y)). Applying the negation operation, we obtain Jz3y—(P(x) V Q(y)).

c¢) First we rewrite this using Table 7 in Section 1.3 as JzQ(z) V -3z P(x), which is equivalent to JzQ(z) Vv
Vz—P(z). To combine the existential and universal statements we use Exercise 49b of the current section,
obtaining Vz3y(—P(z) V Q(y)), which is in prenex normal form.

We simply want to say that there exists an z such that P(x) holds, and that every y such that P(y) holds
must be this same x. Thus we write Jz(P(z) A Vy(P(y) — y = x)). Even more compactly, we can write
Javy(P(y) <y =1).
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2.

10.

This is modus tollens. The first statement is p — ¢, where p is “George does not have eight legs” and ¢

b2

is “George is not a spider.” The second statement is —q. The third is =p. Modus tollens is valid. We can
therefore conclude that the conclusion of the argument (third statement) is true, given that the hypotheses

(the first two statements) are true.

. a) We have taken the conjunction of two propositions and asserted one of them. This is, according to Table 1,

simplification.
b) We have taken the disjunction of two propositions and the negation of one of them, and asserted the other.
This is, according to Table 1, disjunctive syllogism. See Table 1 for the other parts of this exercise as well.

¢) modus ponens d) addition e) hypothetical syllogism

. Let r be the proposition “It rains,” let f be the proposition “It is foggy,” let s be the proposition “The

sailing race will be held,” let [ be the proposition “The life saving demonstration will go on,” and let ¢ be the
proposition “The trophy will be awarded.” We are given premises (-rV —f) — (s Al), s — ¢, and —t. We
want to conclude r. We set up the proof in two columns, with reasons, as in Example 6. Note that it is valid
to replace subexpressions by other expressions logically equivalent to them.

Step Reason

1. —t Hypothesis

2. s >t Hypothesis

3. —s Modus tollens using (1) and (2)

4. (-rV-of) — (sAl) Hypothesis

5. (0(sAl)) — —(=rVv-f)  Contrapositive of (4)

6. (msV-l)— (rAf) De Morgan’s law and double negative
7. as vl Addition, using (3)

8. rAf Modus ponens using (6) and (7)

9. r Simplification using (8)

First we use universal instantiation to conclude from “For all x, if x is a man, then z is not an island”
the special case of interest, “If Manhattan is a man, then Manhattan is not an island.” Then we form the
contrapositive (using also double negative): “If Manhattan is an island, then Manhattan is not a man.” Finally
we use modus ponens to conclude that Manhattan is not a man. Alternatively, we could apply modus tollens.

a) If we use modus tollens starting from the back, then we conclude that I am not sore. Another application
of modus tollens then tells us that I did not play hockey.

b) We really can’t conclude anything specific here.

¢) By universal instantiation, we conclude from the first conditional statement by modus ponens that dragon-
flies have six legs, and we conclude by modus tollens that spiders are not insects. We could say using existential
generalization that, for example, there exists a non-six-legged creature that eats a six-legged creature, and
that there exists a non-insect that eats an insect.

d) We can apply universal instantiation to the conditional statement and conclude that if Homer (respectively,
Maggie) is a student, then he (she) has an Internet account. Now modus tollens tells us that Homer is not a
student. There are no conclusions to be drawn about Maggie.

e) The first conditional statement is that if = is healthy to eat, then z does not taste good. Universal
instantiation and modus ponens therefore tell us that tofu does not taste good. The third sentence says that
if you eat x, then z tastes good. Therefore the fourth hypothesis already follows (by modus tollens) from the
first three. No conclusions can be drawn about cheeseburgers from these statements.
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f) By disjunctive syllogism, the first two hypotheses allow us to conclude that I am hallucinating. Therefore
by modus ponens we know that I see elephants running down the road.

Applying Exercise 11, we want to show that the conclusion r follows from the five premises (p At) — (rVs),
qg— (uAt), u—p, ns,and ¢q. From ¢ and ¢ — (uAt) we get u At by modus ponens. From there we get
both u and ¢ by simplification (and the commutative law). From w and u — p we get p by modus ponens.
From p and t we get p At by conjunction. From that and (p At) — (rVs) we get r V s by modus ponens.
From that and —s we finally get r by disjunctive syllogism.

In each case we set up the proof in two columns, with reasons, as in Example 6.
a) Let c¢(x) be “z is in this class,” let r(z) be “a owns a red convertible,” and let ¢(z) be “x has gotten

a speeding ticket.” We are given premises c¢(Linda), r(Linda), Va(r(x) — t(x)), and we want to conclude
Fz(e(x) At(x)).

Step Reason

1. Va(r(z) — t(z)) Hypothesis

2. r(Linda) — ¢(Linda) Universal instantiation using (1)
3. r(Linda) Hypothesis

4. t(Linda) Modus ponens using (2) and (3)

5. ¢(Linda) Hypothesis

6. c(Linda) A ¢(Linda) Conjunction using (4) and (5)

7. Jz(e(x) At(x)) Existential generalization using (6)

b) Let r(z) be “r is one of the five roommates listed,” let d(z) be “x has taken a course in discrete
mathematics,” and let a(z) be “x can take a course in algorithms.” We are given premises Va(r(z) — d(x))
and Vz(d(z) — a(x)), and we want to conclude Vz(r(z) — a(z)). In what follows y represents an arbitrary

person.
Step Reason
1. Va(r(z) — d(x)) Hypothesis
2. r(y) — d(y) Universal instantiation using (1)
3. Vz(d(z) — a(x)) Hypothesis
4. d(y) — a(y) Universal instantiation using (3)
5. r(y) — aly) Hypothetical syllogism using (2) and (4)
6. Vz(r(z) — a(x)) Universal generalization using (5)

c) Let s(x) be “x is a movie produced by Sayles,” let ¢(x) be “z is a movie about coal miners,” and let
w(z) be “movie z is wonderful.” We are given premises Va(s(x) — w(z)) and Jx(s(x) A c(z)), and we want
to conclude Jz(c(z) A w(z)). In our proof, y represents an unspecified particular movie.

Step Reason

1. Fz(s(x) A c(x)) Hypothesis

2. s(y) Ae(y) Existential instantiation using (1)
3. s(y) Simplification using (2)

4. Vz(s(z) — w(x)) Hypothesis

5. s(y) — w(y) Universal instantiation using (4)

6. w(y) Modus ponens using (3) and (5)

7. c(y) Simplification using (2)

8. w(y) A c(y) Conjunction using (6) and (7)

9. Jx(c(x) ANw(x)) Existential generalization using (8)

d) Let c(x) be “x is in this class,” let f(z) be “x has been to France,” and let I(x) be “z has visited the
Louvre.” We are given premises Jx(c(z) A f(z)), Ve(f(x) — I(x)), and we want to conclude Jz(c(x) Al(x)).
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In our proof, y represents an unspecified particular person.

Step Reason

1. Jz(e(x) A f(2)) Hypothesis

2. cly) A fly) Existential instantiation using (1)
3. fly) Simplification using (2)

4. c(y) Simplification using (2)

5. Va(f(z) — l(x)) Hypothesis

6. fly) — U(y) Universal instantiation using (5)

7. U(y) Modus ponens using (3) and (6)

8. cly) N(y) Conjunction using (4) and (7)
9. Jz(c(x) Nl(x)) Existential generalization using (8)

a) This is correct, using universal instantiation and modus tollens.
b) This is not correct. After applying universal instantiation, it contains the fallacy of denying the hypothesis.
c) After applying universal instantiation, it contains the fallacy of affirming the conclusion.

d) This is correct, using universal instantiation and modus ponens.

We know that some s exists that makes S(s,Max) true, but we cannot conclude that Max is one such s.
Therefore this first step is invalid.

a) This is invalid. It is the fallacy of affirming the conclusion. Letting a = —2 provides a counterexample.

b) This is valid; it is modus ponens.

We will give an argument establishing the conclusion. We want to show that all hummingbirds are small. Let
Tweety be an arbitrary hummingbird. We must show that Tweety is small. The first premise implies that
if Tweety is a hummingbird, then Tweety is richly colored. Therefore by (universal) modus ponens we can
conclude that Tweety is richly colored. The third premise implies that if Tweety does not live on honey, then
Tweety is not richly colored. Therefore by (universal) modus tollens we can now conclude that Tweety does
live on honey. Finally, the second premise implies that if Tweety is a large bird, then Tweety does not live
on honey. Therefore again by (universal) modus tollens we can now conclude that Tweety is not a large bird,
i.e., that Tweety is small, as desired. Notice that we invoke universal generalization as the last step.

Steps 3 and 5 are incorrect; simplification applies to conjunctions, not disjunctions.

We want to show that the conditional statement P(a) — R(a) is true for all a in the domain; the desired
conclusion then follows by universal generalization. Thus we want to show that if P(a) is true for a particu-
lar a, then R(a) is also true. For such an a, by universal modus ponens from the first premise we have Q(a),
and then by universal modus ponens from the second premise we have R(a), as desired.

We want to show that the conditional statement —R(a) — P(a) is true for all a in the domain; the desired
conclusion then follows by universal generalization. Thus we want to show that if —R(a) is true for a partic-
ular a, then P(a) is also true. For such an a, universal modus tollens applied to the second premise gives us
—(=P(a) A Q(a)). By rules from propositional logic, this gives us P(a) V =Q(a). By universal generalization
from the first premise, we have P(a)VQ(a). Now by resolution we can conclude P(a)V P(a), which is logically
equivalent to P(a), as desired.

Let a be “Allen is a good boy”; let A be “Hillary is a good girl”; let d be “David is happy.” Then our
assumptions are —a V h and a V d. Using resolution gives us h V d, as desired.
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We apply resolution to give the tautology (pV F) A (-pV F) — (F V F). The left-hand side is equivalent to
pA-p, since pVF is equivalent to p, and —pV F is equivalent to —p. The right-hand side is equivalent to F.
Since the conditional statement is true, and the conclusion is false, it follows that the hypothesis, p A —p, is
false, as desired.

Let us use the following letters to stand for the relevant propositions: d for “logic is difficult”; s for “many
students like logic”; and e for “mathematics is easy.” Then the assumptions are d V —s and e — —d. Note
that the first of these is equivalent to s — d, since both forms are false if and only if s is true and d is false.
In addition, let us note that the second assumption is equivalent to its contrapositive, d — —e. And finally,
by combining these two conditional statements, we see that s — —e also follows from our assumptions.

a) Here we are asked whether we can conclude that s — —e. As we noted above, the answer is yes, this
conclusion is valid.

b) The question concerns —e — —s. This is equivalent to its contrapositive, s — e. That doesn’t seem to
follow from our assumptions, so let’s find a case in which the assumptions hold but this conditional statement
does not. This conditional statement fails in the case in which s is true and e is false. If we take d to be true
as well, then both of our assumptions are true. Therefore this conclusion is not valid.

¢) The issue is —e V d, which is equivalent to the conditional statement e — d. This does not follow from our
assumptions. If we take d to be false, e to be true, and s to be false, then this proposition is false but our
assumptions are true.

d) The issue is =d V —e, which is equivalent to the conditional statement d — —e. We noted above that this
validly follows from our assumptions.

e) This sentence says —s — (—e V —=d). The only case in which this is false is when s is false and both e and
d are true. But in this case, our assumption e — —d is also violated. Therefore, in all cases in which the
assumptions hold, this statement holds as well, so it is a valid conclusion.

SECTION 1.7 Introduction to Proofs

2.

10.

We must show that whenever we have two even integers, their sum is even. Suppose that a and b are
two even integers. Then there exist integers s and ¢ such that ¢ = 2s and b = 2¢t. Adding, we obtain
a+b=2s+ 2t =2(s+t). Since this represents a + b as 2 times the integer s+ ¢, we conclude that a + b is
even, as desired.

. We must show that whenever we have an even integer, its negative is even. Suppose that a is an even integer.

Then there exists an integer s such that a = 2s. Its additive inverse is —2s, which by rules of arithmetic and
algebra (see Appendix 1) equals 2(—s). Since this is 2 times the integer —s, it is even, as desired.

. An odd number is one of the form 2n 4 1, where n is an integer. We are given two odd numbers, say 2a + 1

and 2b+ 1. Their product is (2a + 1)(2b+ 1) = 4ab+ 2a + 2b+ 1 = 2(2ab+ a + b) + 1. This last expression
shows that the product is odd, since it is of the form 2n + 1, with n = 2ab+ a + b.

. Let n=m?2. If m =0, then n + 2 = 2, which is not a perfect square, so we can assume that m > 1. The

smallest perfect square greater than n is (m + 1)?, and we have (m+1)2 =m? +2m+1=n+2m+1 >
n+2-141>n+2. Therefore n + 2 cannot be a perfect square.

A rational number is a number that can be written in the form z/y where z and y are integers and y # 0.
Suppose that we have two rational numbers, say a/b and ¢/d. Then their product is, by the usual rules for
multiplication of fractions, (ac)/(bd). Note that both the numerator and the denominator are integers, and
that bd # 0 since b and d were both nonzero. Therefore the product is, by definition, a rational number.
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12. This is true. Suppose that a/b is a nonzero rational number and that x is an irrational number. We must
prove that the product za/b is also irrational. We give a proof by contradiction. Suppose that za/b were
rational. Since a/b # 0, we know that a # 0, so b/a is also a rational number. Let us multiply this rational
number b/a by the assumed rational number za/b. By Exercise 26, the product is rational. But the product is
(b/a)(xza/b) = x, which is irrational by hypothesis. This is a contradiction, so in fact za/b must be irrational,
as desired.

14. If z is rational and not zero, then by definition we can write = p/q, where p and ¢ are nonzero integers.
Since 1/x is then ¢/p and p # 0, we can conclude that 1/x is rational.

16. We give a proof by contraposition. If it is not true than m is even or n is even, then m and n are both odd.
By Exercise 6, this tells us that mn is odd, and our proof is complete.

18. a) We must prove the contrapositive: If n is odd, then 3n + 2 is odd. Assume that n is odd. Then we can
write n = 2k + 1 for some integer k. Then 3n+2=32k+1)+2=6k+5=2(8k+2)+1. Thus 3n+2 is
two times some integer plus 1, so it is odd.

b) Suppose that 3n + 2 is even and that n is odd. Since 3n + 2 is even, so is 3n. If we add subtract an odd
number from an even number, we get an odd number, so 3n —n = 2n is odd. But this is obviously not true.
Therefore our supposition was wrong, and the proof by contradiction is complete.

20. We need to prove the proposition “If 1 is a positive integer, then 12 > 1.” The conclusion is the true statement
1 > 1. Therefore the conditional statement is true. This is an example of a trivial proof, since we merely
showed that the conclusion was true.

22. We give a proof by contradiction. Suppose that we don’t get a pair of blue socks or a pair of black socks.
Then we drew at most one of each color. This accounts for only two socks. But we are drawing three socks.
Therefore our supposition that we did not get a pair of blue socks or a pair of black socks is incorrect, and
our proof is complete.

24. We give a proof by contradiction. If there were at most two days falling in the same month, then we could
have at most 212 = 24 days, since there are 12 months. Since we have chosen 25 days, at least three of
them must fall in the same month.

26. We need to prove two things, since this is an “if and only if” statement. First let us prove directly that
if n is even then 7n 4+ 4 is even. Since n is even, it can be written as 2k for some integer k. Then
™+ 4 =14k + 4 = 2(7k 4+ 2). This is 2 times an integer, so it is even, as desired. Next we give a proof by
contraposition that if 7n + 4 is even then n is even. So suppose that n is not even, i.e., that n is odd. Then
n can be written as 2k + 1 for some integer k. Thus Tn+4 = 14k + 11 = 2(7k+5) + 1. This is 1 more than
2 times an integer, so it is odd. That completes the proof by contraposition.

28. There are two things to prove. For the “if” part, there are two cases. If m = n, then of course m? = n?;

if m = —n, then m? = (—n)? = (—1)?n% = n2. For the “only if” part, we suppose that m? = n?. Putting
everything on the left and factoring, we have (m + n)(m —n) = 0. Now the only way that a product of two
numbers can be zero is if one of them is zero. Therefore we conclude that either m +n = 0 (in which case
m = —n), or else m —n =0 (in which case m = n), and our proof is complete.

30. We write these in symbols: a < b, (a +b)/2 > a, and (a +b)/2 < b. The latter two are equivalent to
a+0b>2a and a4+ b < 2b, respectively, and these are in turn equivalent to b > a and a < b, respectively. It
is now clear that all three statements are equivalent.
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We give direct proofs that (i) implies (4), that (47) implies (%), and that (éi¢) implies (7). That will suffice.
For the first, suppose that @ = p/q where p and ¢ are integers with ¢ # 0. Then 2/2 = p/(2q), and this is
rational, since p and 2q are integers with 2¢ # 0. For the second, suppose that /2 = p/q where p and ¢
are integers with ¢ # 0. Then x = (2p)/q, so 3z — 1 = (6p)/q — 1 = (6p — q)/q and this is rational, since
6p — ¢ and ¢ are integers with ¢ # 0. For the last, suppose that 3z — 1 = p/q where p and ¢ are integers
with ¢ #0. Then = = (p/q+1)/3 = (p+ ¢)/(3q), and this is rational, since p + ¢ and 3¢ are integers with

3q # 0.

No. This line of reasoning shows that if /222 —1 = z, then we must have z = 1 or z = —1. These are
therefore the only possible solutions, but we have no guarantee that they are solutions, since not all of our
steps were reversible (in particular, squaring both sides). Therefore we must substitute these values back into
the original equation to determine whether they do indeed satisfy it.

The only conditional statements not shown directly are p; < p2, ps < p4, and p3 < ps. But these each
follow with one or more intermediate steps: p; <> p2, since p; <« p3 and p3 <> pa; P2 <> P4, Since ps « Py
(just established) and p; < p4; and ps < py, since p3 <> p; and p; < pg.

We must find a number that cannot be written as the sum of the squares of three integers. We claim that 7
is such a number (in fact, it is the smallest such number). The only squares that can be used to contribute
to the sum are 0, 1, and 4. We cannot use two 4’s, because their sum exceeds 7. Therefore we can use at
most one 4, which means that we must get 3 using just 0’s and 1’s. Clearly three 1’s are required for this,
bringing the total number of squares used to four. Thus 7 cannot be written as the sum of three squares.

Suppose that we look at the ten groups of integers in three consecutive locations around the circle (first-
second-third, second-third-fourth, ..., eighth-ninth-tenth, ninth-tenth-first, and tenth-first-second). Since
each number from 1 to 10 gets used three times in these groups, the sum of the sums of the ten groups must
equal three times the sum of the numbers from 1 to 10, namely 3 - 55 = 165. Therefore the average sum is
165/10 = 16.5. By Exercise 39, at least one of the sums must be greater than or equal to 16.5, and since the
sums are whole numbers, this means that at least one of the sums must be greater than or equal to 17.

We show that each of these is equivalent to the statement (v) n is odd, say n = 2k+1. Example 1 showed that
(v) implies (4), and Example 8 showed that () implies (v). For (v) — (#) we see that 1 —n=1—-(2k+1) =
2(—k) is even. Conversely, if n were even, say n = 2m, then we would have 1 —n=1—-2m =2(—m)+1, so
1 —n would be odd, and this completes the proof by contraposition that (i) — (v). For (v) — (i), we see
that n® = (2k+1)3 = 8k3+12k2+6k+1 = 2(4k3+6k%+3k)+1 is odd. Conversely, if n were even, say n = 2m,
then we would have n® = 2(4m?), so n® would be even, and this completes the proof by contraposition that
(i1i) — (v). Finally, for (v) — (iv), we see that n? + 1= (2k +1)2 + 1 = 4k? + 4k + 2 = 2(2k*> + 2k + 1) is
even. Conversely, if n were even, say n = 2m, then we would have n? +1 = 2(2m?) + 1, so n? + 1 would be
odd, and this completes the proof by contraposition that (iv) — (v).
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The cubes that might go into the sum are 1, 8, 27, 64, 125, 216, 343, 512, and 729. We must show that
no two of these sum to a number on this list. If we try the 45 combinations (1+1, 14+8, ..., 14729, 8+38,
84+27,...84729, ..., 729 + 729), we see that none of them works. Having exhausted the possibilities, we
conclude that no cube less than 1000 is the sum of two cubes.

There are three main cases, depending on which of the three numbers is smallest. If a is smallest (or tied for
smallest), then clearly a < min(b, ), and so the left-hand side equals a. On the other hand, for the right-hand
side we have min(a, c) = a as well. In the second case, b is smallest (or tied for smallest). The same reasoning
shows us that the right-hand side equals b; and the left-hand side is min(a,b) = b as well. In the final case,
in which ¢ is smallest (or tied for smallest), the left-hand side is min(a, c) = ¢, whereas the right-hand side is
clearly also c. Since one of the three has to be smallest we have taken care of all the cases.

. Because x and y are of opposite parities, we can assume, without loss of generality, that x is even and

y is odd. This tells us that = 2m for some integer m and y = 2n + 1 for some integer n. Then
5245y =52m)+5(2n+1) = 10m+10n+1=10(m+n)+1 =2-5(m+n)+ 1, which satisfies the definition
of being an odd number.

. The number 1 has this property, since the only positive integer not exceeding 1 is 1 itself, and therefore the

sum is 1. This is a constructive proof.

The only perfect squares that differ by 1 are 0 and 1. Therefore these two consecutive integers cannot both
be perfect squares. This is a nonconstructive proof—we do not know which of them meets the requirement.
(In fact, a computer algebra system will tell us that neither of them is a perfect square.)

Of these three numbers, at least two must have the same sign (both positive or both negative), since there are
only two signs. (It is conceivable that some of them are zero, but we view zero as positive for the purposes of
this problem.) The product of two with the same sign is nonnegative. This was a nonconstructive proof, since
we have not identified which product is nonnegative. (In fact, a computer algebra system will tell us that all
three are positive, so all three products are positive.)

An assertion like this one is implicitly universally quantified—it means that for all rational numbers a and b,
ab is rational. To disprove such a statement it suffices to provide one counterexample. Take a = 2 and

b=1/2. Then ab =21/2 = \/5, and we know from Example 10 in Section 1.7 that \/2 is not rational.

We know from algebra that the following equations are equivalent: ax +b =c¢, ax =c—b. = = (c—b)/a.
This shows, constructively, what the unique solution of the given equation is.

Given r, let a be the closest integer to r less than 7, and let b be the closest integer to r greater than r. In
the notation to be introduced in Section 2.3, a = |r| and b = [r]. In fact, b = a + 1. Clearly the distance
between r and any integer other than a or b is greater than 1 so cannot be less than 1/2. Furthermore, since
r is irrational, it cannot be exactly half-way between a and b, so exactly one of r —a < 1/2 and b—r < 1/2
holds.

Given z, let n be the greatest integer less than or equal to x, and let ¢ = x — n. In the notation to be
introduced in Section 2.3, n = |z]. Clearly 0 < e < 1, and ¢ is unique for this n. Any other choice of n
would cause the required e to be less than 0 or greater than or equal to 1, so n is unique as well.
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We follow the hint. The square of every real number is nonnegative, so (z — 1/z)? > 0. Multiplying this out
and simplifying, we obtain 22 —2+ 1/2%2 >0, so 2% + 1/2? > 2, as desired.

Let x =1 and y = 10. Then their arithmetic is 5.5 and their quadratic mean is +/50.5 ~ 7.11. Similarly, if
x =5 and y = 8, then the arithmetic mean is (5+8)/2 = 6.5 and the quadratic mean is /(5% + 82)/2 ~ 6.67.
So we conjecture that the quadratic mean is always greater than or equal to the arithmetic mean. Thus we

[ 22 + 92 S x+y
2 - 2

for all positive real numbers = and y.Doing some algebra, we find that this inequality is equivalent to the true
statement that (z —y)? > 0:

want to prove that

x? + y? STty
2 -2
2% + 2y > 2 + 2zy + 2
2 =2y +9>>0
(x—y)?>0

In fact, our argument also shows that equality holds if and only if = = y.

If we were to end up with nine 0’s, then in the step before this we must have had either nine 0’s or nine
1’s, since each adjacent pair of bits must have been equal and therefore all the bits must have been the same.
Thus if we are to start with something other than nine 0’s and yet end up with nine 0’s, we must have had
nine 1’s at some point. But in the step before that each adjacent pair of bits must have been different; in
other words, they must have alternated 0, 1, 0, 1, and so on. This is impossible with an odd number of bits.
This contradiction shows that we can never get nine 0’s.

Clearly only the last two digits of n contribute to the last two digits of n%. So we can compute 0%, 1%, 22,
32, ..., 992, and record the last two digits, omitting repetitions. We obtain 00, 01, 04, 09, 16, 25, 36, 49,
64, 81, 21, 44, 69, 96, 56, 89, 24, 61, 41, 84, 29, 76. From that point on, the list repeats in reverse order
(as we take the squares from 252 to 492, and then it all repeats again as we take the squares from 50% to
992). The reason for these last two statements are that (50 — n)? = 2500 — 100n + n?, so (50 — n)? and n?
have the same two final digits, and (50 4+ n)? = 2500 + 100n + n?, so (50 + n)? and n? have the same two
final digits. Thus our list (which contains 22 numbers) is complete.

If |y| > 2, then 222 + 5y? > 222 4+ 20 > 20, so the only possible values of y to try are 0 and +1. In the
former case we would be looking for solutions to 222 = 14 and in the latter case to 222 = 9. Clearly there
are no integer solutions to these equations, so there are no solutions to the original equation.

Following the hint, we let * = m? —n?, y = 2mn, and z = m? +n?. Then 22 +y% = (m? —n?)2 + (2mn)? =
m* — 2m?n? 4+ n* + 4m2n? = m* 4+ 2m2n? + n* = (m? +n?)?2 = 22. Thus we have found infinitely many
solutions, since m and n can be arbitrarily large.

One proof that /2 is irrational is similar to the proof that /2 is irrational, given in Example 10 in Section 1.7.
It is a proof by contradiction. Suppose that 2'/3 (or /2, which is the same thing) is the rational number
p/q, where p and ¢ are positive integers with no common factors (the fraction is in lowest terms). Cubing,
we see that 2 = p3/q¢?, or, equivalently, p*> = 2¢3. Thus p® is even. Since the product of odd numbers is
odd, this means that p is even, so we can write p = 2s. Substituting into the equation p® = 2¢>, we obtain
8s3 = 2¢>, which simplifies to 45> = ¢3.



Section 1.8 Proof Methods and Strategy 33

36.

38.

40.

42.

44.

46.

48.

Now we play the same game with ¢. Since ¢° is even, ¢ must be even. We have now concluded that p
and ¢ are both even, that is, that 2 is a common divisor of p and ¢. This contradicts the choice of p/q to be
in lowest terms. Therefore our original assumption—that /2 is rational—is in error, so we have proved that
/2 is irrational.

The average of two different numbers is certainly always between the two numbers. Furthermore, the average
a of rational number x and irrational number y must be irrational, because the equation a = (z +y)/2 leads
to y = 2a — x, which would be rational if a were rational.

The solution is not unique, but here is one way to measure out four gallons. Fill the 5-gallon jug from the
8-gallon jug, leaving the contents (3,5,0), where we are using the ordered triple to record the amount of water
in the 8-gallon jug, the 5-gallon jug, and the 3-gallon jug, respectively. Next fill the 3-gallon jug from the
5-gallon jug, leaving (3,2,3). Pour the contents of the 3-gallon jug back into the 8-gallon jug, leaving (6,2,0).
Empty the 5-gallon jug’s contents into the 3-gallon jug, leaving (6,0,2), and then fill the 5-gallon jug from
the 8-gallon jug, producing (1,5,2). Finally, top off the 3-gallon jug from the 5-gallon jug, and we’ll have
(1,4, 3), with four gallons in the 5-gallon jug.

a) 16-8—-4—-2—1

b) 11534 —-17—-52—-26—-13—-40—-20—-10—-5—-16—-8—>4—>2—>1
c) 35 - 106 - 53 - 160 - 80 - 40 -20 - 10 —>5—-16—>8 -4 —2—1
d) 113 - 340 — 170 - 85 — 256 —» 128 - 64 - 32 - 16 -8 -4 -2 — 1

This is easily done, by laying the dominoes horizontally, three in the first and last rows and four in each of
the other six rows.

Without loss of generality, we number the squares from 1 to 25, starting in the top row and proceeding left to
right in each row; and we assume that squares 5 (upper right corner), 21 (lower left corner), and 25 (lower right
corner) are the missing ones. We argue that there is no way to cover the remaining squares with dominoes.

By symmetry we can assume that there is a domino placed in 1-2 (using the obvious notation). If square
3 is covered by 3-8, then the following dominoes are forced in turn: 4-9, 10-15, 19-20, 23-24, 17-22, and 13-18,
and now no domino can cover square 14. Therefore we must use 3-4 along with 1-2. If we use all of 17-22,
18-23, and 19-24, then we are again quickly forced into a sequence of placements that lead to a contradiction.
Therefore without loss of generality, we can assume that we use 22-23, which then forces 19-24, 15-20, 9-10,
13-14, 7-8, 6-11, and 12-17, and we are stuck once again. This completes the proof by contradiction that no

placement is possible.

The barriers shown in the diagram split the board into one continuous closed path of 64 squares, each adjacent
to the next (for example, start at the upper left corner, go all the way to the right, then all the way down,
then all the way to the left, and then weave your way back up to the starting point). Because each square in
the path is adjacent to its neighbors, the colors alternate. Therefore, if we remove one black square and one
white square, this closed path decomposes into two paths, each of which starts in one color and ends in the
other color (and therefore has even length). Clearly each such path can be covered by dominoes by starting
at one end. This completes the proof.

If we study Figure 7, we see that by rotating or reflecting the board, we can make any square we wish
nonwhite, with the exception of the squares with coordinates (3,3), (3,6), (6,3), and (6,6). Therefore the
same argument as was used in Example 22 shows that we cannot tile the board using straight triominoes if
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any one of those other 60 squares is removed. The following drawing (rotated as necessary) shows that we can
tile the board using straight triominoes if one of those four squares is removed.

50. We will use a coloring of the 10 x 10 board with four colors as the basis for a proof by contradiction showing

that no such tiling exists. Assume that 25 straight tetrominoes can cover the board. Some will be placed
horizontally and some vertically. Because there is an odd number of tiles, the number placed horizontally and
the number placed vertically cannot both be odd, so assume without loss of generality that an even number
of tiles are placed horizontally. Color the squares in order using the colors red, blue, green, yellow in that
order repeatedly, starting in the upper left corner and proceeding row by row, from left to right in each row.
Then it is clear that every horizontally placed tile covers one square of each color and each vertically placed
tile covers either zero or two squares of each color. It follows that in this tiling an even number of squares of
each color are covered. But this contradicts the fact that there are 25 squares of each color. Therefore no
such coloring exists.

SUPPLEMENTARY EXERCISES FOR CHAPTER 1
2. The truth table is as follows.

p q r pVg pA-w (rVg) — (A-T)
TTT T F F
T TF T T T
TFT T F F
TFF T T T
FTT T F F
FTF T F F
F FT F F T
F FF F F T

4. a) The converse is “If I drive to work today, then it will rain.” The contrapositive is “If I do not drive to work

today, then it will not rain.” The inverse is “If it does not rain today, then I will not drive to work.”

b) The converse is “If > 0 then |z| = z.” The contrapositive is “If < 0 then |z| # x.” The inverse is “If
|z| # x, then < 0.”

c) The converse is “If n? is greater than 9, then n is greater than 3.” The contrapositive is “If n? is not

2

greater than 9, then n is not greater than 3.” The inverse is “If n is not greater than 3, then n* is not

greater than 9.”

. The inverse of p — ¢ is =p — —q. Therefore the inverse of the inverse is =—p — ——¢, which is equivalent to

p — q (the original proposition). The converse of p — ¢ is ¢ — p. Therefore the inverse of the converse is
—q — —p, which is the contrapositive of the original proposition. The inverse of the contrapositive is ¢ — p,
which is the same as the converse of the original statement.
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8.

10.

12.

14.

16.

18.

20.

22.

Let t be “Sergei takes the job offer”; let b be “Sergei gets a signing bonus”; and let h be “Sergei will receive a
higher salary.” The given statements are t — b, t — h, b — —h, and t. By modus ponens we can conclude b
and h from the first two conditional statements, and therefore we can conclude —h from the third conditional
statement. We now have the contradiction h A =h, so these statements are inconsistent.

We make a table of the eight possibilities for p, ¢, and r, showing the truth values of the three propositions.
p g r p—q ~pVr)Vg g
T T T T T T
T T F T T T
T F T F F T
T F F F F T
F T T T T F
F T F T T F
F F T T F F
F F F T T F

If we look at the first row of the table, we see that if the student accepts all three propositions, then the
resulting commitments are consistent, because the propositions are all true in this case in which p, ¢, and
r are all true. Similarly, looking at the sixth row of the table, where p and r are false but ¢ is true, we
see that a student who accepts the first two propositions and rejects the third also wins. Scanning the entire
table, we see that the winning answers are accept-accept-accept, reject-reject-accept, accept-accept-reject, and
accept-reject-reject.

As we saw from the examples in the previous exercises, one winning strategy is just to assume that all the
variables are true and answer “accept” or “reject” according to whether the given proposition is true or false.

A knight would never claim that she is a knave, so we know that Anita is a knave. Because she is lying and
the first part of her conjunction is true, it must be the second part that is false, and so Bohan must be a
knave. If Carmen were a knight, then Bohan’s statement would be true; because Bohan is a knave, we know
that that cannot be, so we conclude that Carmen is also a knave.

If S is a proposition, then it is either true or false. If S is false, then the statement “If S is true, then unicorns
live” is vacuously true; but this statement is .S, so we would have a contradiction. Therefore S is true, so the
statement “If S is true, then unicorns live” is true and has a true hypothesis. Hence it has a true conclusion
(modus ponens), and so unicorns live. But we know that unicorns do not live. It follows that S cannot be a
proposition.

From the given information we know that pi, p3, ps, ... are true and ps, ps, ps, -.. are false. Therefore

pi A pit1 is always false, and so the disjunction \/2122 (pi A piy1) is also false. On the other hand, p; V p;41 is
. . 100 .

always true, and so the conjunction A;”;(p; V pi+1) is also true.

a) The answer is JzP(z) if we do not read any significance into the use of the plural, and Jxz3y(P(z) A P(y) A
x #y) if we do.

b) —VaP(x), or, equivalently, 3z—P(z) c) VyQ(y)

d) VaxP(z) (the class has nothing to do with it) e) Jy—Q(y)

The given statement tells us that there are exactly two elements in the domain. Therefore the statement will
be true as long as we choose the domain to be anything with size 2, such as the United States presidents
named Bush.
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We want to say that for every y, there do not exist four different people each of whom is the grandmother of y.
Thus we have Vx—3a3bIcId(a #bAa # cha# dANb# cANb#dNec#dNG(a,y) NG(b,y) NG(e,y) NG(d, y)).

a) Since there is no real number whose square is —1, it is true that there exist exactly 0 values of x such
that 22 = —1.

b) This is true, because 0 is the one and only value of 2 such that |z| =0.

c) This is true, because V2 and —+/2 are the only values of x such that 22 =2,

d) This is false, because there are more than three values of z such that x = |z|, namely all positive real

numbers.

Let us assume the hypothesis. This means that there is some xg such that P(zo,y) holds for all y. Then
it is certainly true that for all y there exists an x such that P(z,y) is true, since in each case we can take
x = xzo. Note that the converse is not always a tautology, since the x in Vy3zP(z,y) can depend on y.

No. Here is an example. Let P(x,y) be x > y, where we are talking about integers. Then for every y there
does exist an x such that > y; we could take x = y + 1, for example. However, there does not exist an z
such that for every y, x > y; in other words, there is no superlarge integer (if for no other reason than that
no integer can be larger than itself).

a) It will snow today, but I will not go skiing tomorrow.
b) Some person in this class does not understand mathematical induction.
c¢) All students in this class like discrete mathematics.

d) There is some mathematics class in which all the students stay awake during lectures.

Let W (r) means that room r is painted white. Let I(r,b) mean that room r is in building b. Let L(b,u)
mean that building b is on the campus of United States university w. Then the statement is that there is
some university u and some building on the campus of u such that every room in b is painted white. In
symbols this is Ju3b(L(b,u) AVr(I(r,b) — W(r))).

To say that there are exactly two elements that make the statement true is to say that two elements exist that
make the statement true, and that every element that makes the statement true is one of these two elements.
More compactly, we can phrase the last part by saying that an element makes the statement true if and only
if it is one of these two elements. In symbols this is JxIy(z # y AVz(P(z) < (z =2V 2z =1y))). In English
we might express the rule as follows. The hypotheses are that P(z) and P(y) are both true, that = # y, and
that every z that satisfies P(z) must be either = or y. The conclusion is that there are exactly two elements
that make P true.

We give a proof by contraposition. If x is rational, then = = p/q for some integers p and ¢ with ¢ # 0.
Then x® = p®/q?, and we have expressed 23 as the quotient of two integers, the second of which is not zero.
This by definition means that z3 is rational, and that completes the proof of the contrapositive of the original

statement.

Let m be the square root of n, rounded down if it is not a whole number. (In the notation to be introduced in
Section 2.3, we are letting m = |\/n].) We can see that this is the unique solution in a couple of ways. First,
clearly the different choices of m correspond to a partition of N, namely into {0}, {1,2,3}, {4,5,6,7,8},
{9,10,11,12,13,14,15}, .... So every n is in exactly one of these sets. Alternatively, take the square root
of the given inequalities to give m < /n < m + 1. That m is then the floor of /n (and that m is unique)
follows from statement (1a) of Table 1 in Section 2.3.
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42. A constructive proof seems indicated. We can look for examples by hand or with a computer program. The
smallest ones to be found are 50 = 52 + 52 =12 + 72 and 65 =42 + 72 = 12 4+ 82,

44. We claim that the number 7 is not the sum of at most two squares and a cube. The first two positive squares
are 1 and 4, and the first positive cube is 1, and these are the only numbers that could be used in forming
the sum. Clearly no sum of three or fewer of these is 7. This counterexample disproves the statement.

46. We give a proof by contradiction. If v/2 4+ v/3 were rational, then so would be its square, which is 5+ 21/6.
Subtracting 5 and dividing by 2 then shows that /6 is rational, but this contradicts the theorem we are told

to assume.
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CHAPTER 2

Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

SECTION 2.1 Sets

2.

10.

12.

There are of course an infinite number of correct answers.
a) {3n|n=0,1,2,3,4} or {z |z is a multiple of 3A0 <z <12}.
b) {z]| -3 <z <3}, where we are assuming that the domain (universe of discourse) is the set of integers.

c) {z |z is a letter of the word monopoly other than [ or y }.

. Recall that one set is a subset of another set if every element of the first set is also an element of the second.

a) The second condition imposes an extra requirement, so clearly the second set is a subset of the first, but
not vice versa.

b) Again the second condition imposes an extra requirement, so the second set is a subset of the first, but
not vice versa.

¢) There could well be students studying discrete mathematics but not data structures (for example, pure
math majors) and students studying data structure but not discrete mathematics (at least not this semester—
one could argue that the knowing the latter is necessary to really understand the former!), so neither set is a
subset of the other.

. Each of the sets is a subset of itself. Aside from that, the only relations are BC A, C C A, and C C D.

. a) Since the set contains only integers and {2} is a set, not an integer, {2} is not an element.

b) Since the set contains only integers and {2} is a set, not an integer, {2} is not an element.

c) The set has two elements. One of them is patently {2}.

d) The set has two elements. One of them is patently {2}.

e) The set has two elements. One of them is patently {2}.

f) The set has only one element, {{2}}; since this is not the same as {2} (the former is a set containing a
set, whereas the latter is a set containing a number), {2} is not an element of {{{2}}}.

a) true b) true c) false—see part (a) d) true
e) true—the one element in the set on the left is an element of the set on the right, and the sets are not equal

f) true—similar to part (e) g) false—the two sets are equal

The numbers 1, 3, 5, 7, and 9 form a subset of the set of all ten positive integers under discussion, as shown
here.
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14.

16.

18.

20.

22,

24.

26.

28.

30.

We put the subsets inside the supersets. Thus the answer is as shown.

We allow B and C' to overlap, because we are told nothing about their relationship. The set A must be a
subset of each of them, and that forces it to be positioned as shown. We cannot actually show the properness
of the subset relationships in the diagram, because we don’t know where the elements in B and C that are
not in A are located—there might be only one (which is in both B and C'), or they might be located in
portions of B and/or C outside the other. Thus the answer is as shown, but with the added condition that
there must be at least one element of B not in A and one element of C' not in A.

®

Since the empty set is a subset of every set, we just need to take a set B that contains ) as an element. Thus
we can let A= and B = {0} as the simplest example.

The cardinality of a set is the number of elements it has.

a) The empty set has no elements, so its cardinality is 0.

b) This set has one element (the empty set), so its cardinality is 1.
c) This set has two elements, so its cardinality is 2.

d) This set has three elements, so its cardinality is 3.

The union of all the sets in the power set of a set X must be exactly X . In other words, we can recover X
from its power set, uniquely. Therefore the answer is yes.

a) The power set of every set includes at least the empty set, so the power set cannot be empty. Thus @ is
not the power set of any set.

b) This is the power set of {a}.

¢) This set has three elements. Since 3 is not a power of 2, this set cannot be the power set of any set.

d) This is the power set of {a,b}.

We need to show that every element of A x B is also an element of C' x D. By definition, a typical element
of A x B is a pair (a,b) where a € A and b € B. Because A C C, we know that a € C; similarly, b € D.
Therefore (a,b) € C x D.

By definition it is the set of all ordered pairs (¢, p) such that ¢ is a course and p is a professor. The elements
of this set are the possible teaching assignments for the mathematics department.

We can conclude that A = @ or B = (). To prove this, suppose that neither A nor B were empty. Then
there would be elements a € A and b € B. This would give at last one element, namely (a,b), in A x B, so
A x B would not be the empty set. This contradiction shows that either A or B (or both, it goes without
saying) is empty.
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In each case the answer is a set of 3-tuples.

a) {(a,,0),(a,2,1),(a,y,0),(a,y,1), (b,2,0), (b, z, 1),
b) {(0,z,a),(0,2,b),(0,z,¢),(0,y,a),(0,y,b),(0,y,c),
c) {(0,a,2),(0,a,y),(0,b,x),(0,b,9),(0,c,2),(0,c,y),
d) {(z,2,2),(z,z,9), (z,y,2), (z,9,9), (y,2,2), (y, 2,y

—~

b,9,0), (b, y,1), (¢, x,0), (¢, 2, 1), (¢, y,0), (c,y,1)}
Lz,a),(1,2,0),(1,2,¢),(1,y,a), (1,y,b),(1,y,0)}
1,a,2),(1,a,9),(1,b,2),(1,b,y), (1,¢, ), (1,¢,9)}
sy, 2), (Y59, ) )

Recall that A3 consists of all the ordered triples (x,y,z) of elements of A.
a) {(a,a,a)} b) {(0,0,0),(0,0,a),(0,a,0),(0,a,a),(a,0,0),(a,0,a),(a,a,),(a,aa)}

The set A x B x C cousists of ordered triples (a,b,c¢) with a € A, b € B, and ¢ € C. There are m choices
for the first coordinate. For each of these, there n choices for the second coordinate, giving us mn choices for
the first two coordinates. For each of these, there p choices for the third coordinate, giving us mnp choices
in all. Therefore A x B x C' has mnp elements. This is an application of the product rule (see Chapter 6).

Suppose A # B and neither A nor B is empty. We must prove that A x B # B x A. Since A # B, either
we can find an element x that is in A but not B, or vice versa. The two cases are similar, so without loss of
generality, let us assume that = is in A but not B. Also, since B is not empty, there is some element y € B.
Then (z,y) is in A x B by definition, but it is not in B x A since x ¢ B. Therefore A x B# B x A.

The only difference between (Ax B) x (C'x D) and Ax (BxC)x D is parentheses, so for all practical purposes
one can think of them as essentially the same thing. By Definition 8, the elements of (A x B) x (C' x D)
consist of ordered pairs (z,y), where x € Ax B and y € C' x D, so the typical element of (A x B) x (C x D)
looks like ((a,b), (c,d)). By Definition 9, the elements of A x (B x C) x D consist of 3-tuples (a,z,d), where
a € A, de D,and z € B x C, so the typical element of A x (B x C) x D looks like (a,(b,c),d). The
structures ((a,b), (¢,d)) and (a, (b,c),d) are different, even if they convey exactly the same information (the
first is a pair, and the second is a 3-tuple). To be more precise, there is a natural one-to-one correspondence
between (A x B) x (C x D) and A x (B x C') x D given by ((a,b), (¢,d)) < (a, (b, c),d).

a) There is a real number whose cube is —1. This is true, since = —1 is a solution.

b) There is an integer such that the number obtained by adding 1 to it is greater than the integer. This is
true—in fact, every integer satisfies this statement.

c¢) For every integer, the number obtained by subtracting 1 is again an integer. This is true.

d) The square of every integer is an integer. This is true.

In each case we want the set of all values of x in the domain (the set of integers) that satisfy the given equation
or inequality.

a) It is exactly the positive integers that satisfy this inequality. Therefore the truth set is {z € Z | 23 > 1} =
{reZ|z>1}={1,2,3,...}.

b) The square roots of 2 are not integers, so the truth set is the empty set, @.

c) Negative integers certainly satisfy this inequality, as do all positive integers greater than 1. However, 0 £ 02
and 1 ¢ 12. Thus the truth setis {z € Z |z <2?}={z€Z |z #0Ax#1}={...,-3,-2,-1,2,3,...}.

a) If S €S, then by the defining condition for S we conclude that S ¢ S, a contradiction.
b) If S ¢S, then by the defining condition for S we conclude that it is not the case that S ¢ S (otherwise
S would be an element of ), again a contradiction.
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SECTION 2.2 Set Operations

2.

4.

10.

12.

14.

16.

18.

a) ANB b) AN B, which is the same as A — B c) AUB d) AuB

Note that A C B.
a) {a7b’c7d767f7g’h}:B b) {a7b’c7d76}:A
¢) There are no elements in A that are not in B, so the answer is 0. d) {f,g,h}

.a) AU ={z|zeAVvze}={z|zecAVF}={z|zecA}=A

b) AnNU={z|zecANzecU}={a|zcANT}={z|zcA}=A4

.a) AUA={z|zcAVvarzeA}l={x|zecA}=A

b) AnNA={z|zcANnzecA}={z|zcA}=A4

a) A-O={z|zcANaz¢OD}={z|zcANT}={z|zcA}=A
b) O—A={z|zeDNa¢gA}={z|FANz¢A}={z|F}=0

We will show that these two sets are equal by showing that each is a subset of the other. Suppose z €
AU(ANB). Then x € A or x € AN B by the definition of union. In the former case, we have x € A, and
in the latter case we have x € A and z € B by the definition of intersection; thus in any event, = € A, so
we have proved that the left-hand side is a subset of the right-hand side. Conversely, let © € A. Then by the
definition of union, © € AU (AN B) as well. Thus we have shown that the right-hand side is a subset of the
left-hand side.

Since A = (A — B)U (AN B), we conclude that A = {1,5,7,8} U {3,6,9} = {1,3,5,6,7,8,9}. Similarly
B=(B-A)UANB)={2,10}U{3,6,9} ={2,3,6,9,10}.

a) If z isin AN B, then perforce it is in A (by definition of intersection).

b) If z is in A, then perforce it is in AU B (by definition of union).

c) If z is in A — B, then perforce it is in A (by definition of difference).

d) If z € A then © ¢ B — A. Therefore there can be no elements in AN (B —A),s0 AN(B—A)=0.

e) The left-hand side consists precisely of those things that are either elements of A or else elements of B
but not A, in other words, things that are elements of either A or B (or, of course, both). This is precisely
the definition of the right-hand side.

a) Suppose that © € AU B. Then either © € A or z € B. In either case, certainly x € AU BUC. This
establishes the desired inclusion.

b) Suppose that x € AN BN C. Then z is in all three of these sets. In particular, it is in both A and B
and therefore in AN B, as desired.

c¢) Suppose that © € (A— B) —C. Then z isin A— B but not in C. Since x € A — B, we know that z € A
(we also know that = ¢ B, but that won’t be used here). Since we have established that © € A but = ¢ C,
we have proved that x € A — C'.

d) To show that the set given on the left-hand side is empty, it suffices to assume that x is some element in that
set and derive a contradiction, thereby showing that no such z exists. So suppose that z € (A—C)N(C — B).
Then x € A— C and z € C — B. The first of these statements implies by definition that « ¢ C', while the
second implies that = € C. This is impossible, so our proof by contradiction is complete.

e) To establish the equality, we need to prove inclusion in both directions. To prove that (B—A)U(C—A) C
(BUC)— A, suppose that x € (B— A)U(C — A). Then either z € (B— A) or z € (C — A). Without loss of
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generality, assume the former (the proof in the latter case is exactly parallel.) Then z € B and « ¢ A. From
the first of these assertions, it follows that x € BUC. Thus we can conclude that x € (BUC)— A, as desired.
For the converse, that is, to show that (BUC) — A C (B — A)U (C — A), suppose that x € (BUC) — A.
This means that © € (BUC) and x ¢ A. The first of these assertions tells us that either x € B or z € C.
Thus either z € B— A or x € C — A. In either case, z € (B—A)U (C — A). (An alternative proof could be
given by using Venn diagrams, showing that both sides represent the same region.)

a) It is always the case that B C AU B, so it remains to show that AU B C B. But this is clear because if
x € AU B, then either € A, in which case © € B (because we are given A C B) or « € B; in either case
r € B.

b) It is always the case that AN B C A, so it remains to show that A C AN B. But this is clear because if
x € A, then z € B as well (because we are given A C B),so x € ANB.

First we show that every element of the left-hand side must be in the right-hand side as well. If z € AN(BNC),
then = must be in A and also in BN C. Hence z must be in A and also in B and in C'. Since z is in both
A and B, we conclude that x € AN B. This, together with the fact that x € C tells us that x € (ANB)NC,
as desired. The argument in the other direction (if € (AN B)NC then z must be in AN(BNC)) is nearly
identical.

First suppose x is in the left-hand side. Then x must be in A but in neither B nor C'. Thus z € A — C,
but z ¢ B— C, so z is in the right-hand side. Next suppose that z is in the right-hand side. Thus z must
bein A —C and not in B — C'. The first of these implies that « € A and = ¢ C'. But now it must also be
the case that = ¢ B, since otherwise we would have € B — C'. Thus we have shown that = is in A but in
neither B nor C, which implies that z is in the left-hand side.

The set is shaded in each case.

(a) (b) (c)

Here is a Venn diagram that can be used for four sets. Notice that sets A and B are not convex in this picture.
We have shaded set A. Notice that each of the 16 different combinations are represented by a region.

We can now shade in the appropriate regions for each of the expressions in this exercise.
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30.

32.

34.

36.

38.

a) We cannot conclude that A = B. For instance, if A and B are both subsets of C', then this equation will
always hold, and A need not equal B.

b) We cannot conclude that A = B; let C = @, for example.

c) By putting the two conditions together, we can now conclude that A = B. By symmetry, it suffices to
prove that A C B. Suppose that € A. There are two cases. If z € C', then x € ANC = BN C, which
forces « € B. On the other hand, if x ¢ C, then because x € AUC = BUC, we must have = € B.

This is the set of elements in exactly one of these sets, namely {2,5}.

The figure is as shown; we shade that portion of A that is not in B and that portion of B that is not in A.

A

u

There are precisely two ways that an item can be in either A or B but not both. It can be in A but not B
(which is equivalent to saying that it is in A — B), or it can be in B but not A (which is equivalent to saying
that it is in B — A). Thus an element is in A @ B if and only if it is in (A — B)U (B — A).

a) This is clear from the symmetry (between A and B) in the definition of symmetric difference.

b) We prove two things. To show that A C (A® B) @ B, suppose x € A. If x € B, then © ¢ A® B, so
x is an element of the right-hand side. On the other hand if x ¢ B, then z € A ® B, so again x is in the
right-hand side. Conversely, suppose z is an element of the right-hand side. There are two cases. If x ¢ B,
then necessarily © € A® B, whence x € A. If x € B, then necessarily ¢ A® B, and the only way for that
to happen (since x € B) is for = to be in A.
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40.

42.

44.

46.

48.

50.

52.

54.

56.

58.

60.
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This is an identity; each side consists of those things that are in an odd number of the sets A, B, and C'.
This is an identity; each side consists of those things that are in an odd number of the sets A, B, C', and D.

A finite set is a set with k elements for some natural number k. Suppose that A has n elements and B has
m elements. Then the number of elements in AU B is at most n +m (it might be less because AN B might
be nonempty). Therefore by definition, AU B is finite.

To count the elements of AU BUC we proceed as follows. First we count the elements in each of the sets and
add. This certainly gives us all the elements in the union, but we have overcounted. Each element in AN B,
ANC, and BN C has been counted twice. Therefore we subtract the cardinalities of these intersections to
make up for the overcount. Finally, we have compensated a bit too much, since the elements of AN BN C
have now been counted three times and subtracted three times. We adjust by adding back the cardinality of
ANnBnNC.

We note that these sets are increasing, that is, A; C As C Az C ---. Therefore, the union of any collection
of these sets is just the one with the largest subscript, and the intersection is just the one with the smallest
subscript.

a) Ay =1{...,-2,-1,0,1,....n}  b) A, =1{...,~2,-1,0,1}

a) As 7 increases, the sets get smaller: --- C A3 C Ay C A;. All the sets are subsets of A;, which is the set
of positive integers, Z*. It follows that |J;=, A; = Z*. Every positive integer is excluded from at least one
of the sets (in fact from infinitely many), so (.2, 4; = .

b) All the sets are subsets of the set of natural numbers N (the nonnegative integers). The number 0 is in
each of the sets, and every positive integer is in exactly one of the sets, so (J;>; A; = N and ;2 4; = {0}.
c) As i increases, the sets get larger: Ay C Ay C Ag---. All the sets are subsets of the set of positive real
numbers R, and every positive real number is included eventually, so | J;=, 4; = R*. Because A; is a subset
of each of the others, (2, A; = A; = (0,1) (the interval of all real numbers between 0 and 1, exclusive).
d) This time, as in part (a), the sets are getting smaller as 7 increases: --- C A3 C A2 C A;. Because
A; includes all the others, |J;2; A1 = (1,00) (all real numbers greater than 1). Every number eventually
gets excluded as ¢ increases, so ﬂfil A; = @. Notice that oo is not a real number, so we cannot write

Niey A; = {o0}.
a) 00 1110 0000 b) 10 1001 0001 c) 01 1100 1110

a) No elements are included, so this is the empty set.

b) All elements are included, so this is the universal set.

The bit string for the symmetric difference is obtained by taking the bitwise exclusive OR of the two bit
strings for the two sets, since we want to include those elements that are in one set or the other but not both.

We can take the bitwise OR (for union) or AND (for intersection) of all the bit strings for these sets.

The successor set has one more element than the original set, namely the original set itself. Therefore the
answer is n + 1.
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62.

a) If the departments share the equipment, then the maximum number of each type is all that is required, so
we want to take the union of the multisets, AU B.

b) Both departments will use the minimum number of each type, so we want to take the intersection of the
multisets, AN B.

c¢) This will be the difference B — A of the multisets.
d) If no sharing is allowed, then the university needs to purchase a quantity of each type of equipment that
is the sum of the quantities used by the departments; this is the sum of the multisets, A + B.

64. Taking the maximum for each person, we have SUT = {0.6 Alice, 0.9 Brian, 0.4 Fred, 0.9 Oscar, 0.7 Rita}.

SECTION 2.3 Functions

2.

10.

12.

a) This is not a function because the rule is not well-defined. We do not know whether f(3) =3 or f(3) = —3.
For a function, it cannot be both at the same time.

b) This is a function. For all integers n, v/n2 + 1 is a well-defined real number.

¢) This is not a function with domain Z, since for n = 2 (and also for n = —2) the value of f(n) is not
defined by the given rule. In other words, f(2) and f(—2) are not specified since division by 0 makes no
sense.

. a) The domain is the set of nonnegative integers, and the range is the set of digits (0 through 9).

b) The domain is the set of positive integers, and the range is the set of integers greater than 1.

¢) The domain is the set of all bit strings, and the range is the set of nonnegative integers.

d) The domain is the set of all bit strings, and the range is the set of nonnegative integers (a bit string can
have length 0).

. a) The domain is Z* x ZT and the range is Z".

b) Since the largest decimal digit of a strictly positive integer cannot be 0, we have domain Z* and range
{1,2,3,4,5,6,7,8,9}.

¢) The domain is the set of all bit strings. The number of 1’s minus number of 0’s can be any positive or
negative integer or 0, so the range is Z.

d) The domain is given as Z*. Clearly the range is Z1 as well.

e) The domain is the set of bit strings. The range is the set of strings of 1’s, i.e., {\,1,11,111,...}, where A
is the empty string (containing no symbols).

. We simply round up or down in each case.

a) 1 b) 2 c) -1 d) 0 e) 3 f) —2 g) l3+1=|3]=1
h) [0+1+3]=[5]=2

a) This is one-to-one. b) This is not one-to-one, since b is the image of both a and b.

c) This is not one-to-one, since d is the image of both a and d.

a) This is one-to-one, since if n; — 1 =ng — 1, then ny = ny.
b) This is not one-to-one, since, for example, f(3) = f(—3) = 10.
c) This is one-to-one, since if n$ = n3, then n; = ny (take the cube root of each side).

d) This is not one-to-one, since, for example, f(3) = f(4) = 2.
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16.

18.
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a) This is clearly onto, since f(0,—n) = n for every integer n.

b) This is not onto, since, for example, 2 is not in the range. To see this, if m? —n? = (m —n)(m +n) = 2,
then m and n must have same parity (both even or both odd). In either case, both m —n and m + n are
then even, so this expression is divisible by 4 and hence cannot equal 2.

c) This is clearly onto, since f(0,n — 1) =n for every integer n.

d) This is onto. To achieve negative values we set m = 0, and to achieve nonnegative values we set n = 0.
e) This is not onto, for the same reason as in part (b). In fact, the range here is clearly a subset of the range
in that part.

a) This would normally be one-to-one, unless somehow two students in the class had a strange mobile phone
service in which they shared the same phone number.

b) This is surely one-to-one; otherwise the student identification number would not “identify” students very
well!

¢) This is almost surely not one-to-one; unless the class is very small, it is very likely that two students will
receive the same grade.

d) This function will be one-to-one as long as no two students in the class hale from the same town (which is
rather unlikely, so the function is probably not one-to-one).

Student answers may vary, depending on the choice of codomain.

a) A codomain could be all ten-digit positive integers; the function is not onto because there are many possible
phone numbers assigned to people not in the class.

b) Under some student record systems, the student number consists of eight digits, so the codomain could be
all natural numbers less than 100,000,000. The class does not have 100,000,000 students in it, so this function
is not onto.

¢) A codomain might be {A,B,C,D,F} (the answer depends on the grading system used at that school).
If there were people at all five performance levels in this class, then the function would be onto. If not (for
example, if no one failed the course), then it would not be onto.

d) The codomain could be the set of all cities and towns in the world. The function is clearly not onto.
Alternatively, the codomain could be just the set of cities and towns from which the students in that class
hale, in which case the function would be onto.

a) f(n)=n+17  b) f(n) =[n/2]

c) We let f(n) =n —1 for even values of n, and f(n) =n+1 for odd values of n. Thus we have f(1) =2,
f(2)=1, f(3) =4, f(4) =3, and so on. Note that this is just one function, even though its definition used
two formulae, depending on the the parity of n.

d) f(n) =17

If we can find an inverse, the function is a bijection. Otherwise we must explain why the function is not
on-to-one or not onto.

a) This is a bijection since the inverse function is f~!(z) = (4 — x)/3.

b) This is not one-to-one since f(17) = f(—17), for instance. It is also not onto, since the range is the interval
(—00,7]. For example, 42548 is not in the range.

c) This function is a bijection, but not from R to R. To see that the domain and range are not R, note
that x = —2 is not in the domain, and x = 1 is not in the range. On the other hand, f is a bijection from
R — {-2} to R — {1}, since its inverse is f~!(z) = (1 —2z)/(x — 1).

d) Tt is clear that this continuous function is increasing throughout its entire domain (R) and it takes on both
arbitrarily large values and arbitrarily small (large negative) ones. So it is a bijection. Its inverse is clearly

Fla) = Yz —1.
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24. The key here is that larger denominators make smaller fractions, and smaller denominators make larger
fractions. We have two things to prove, since this is an “if and only if” statement. First, suppose that f is
strictly increasing. This means that f(z) < f(y) whenever < y. To show that g is strictly decreasing,
suppose that < y. Then g(z) =1/f(x) > 1/f(y) = g(y). Conversely, suppose that g is strictly decreasing,.
This means that g(z) > ¢g(y) whenever x < y. To show that f is strictly increasing, suppose that = < y.

Then f(z)=1/g(z) < 1/g(y) = f(y).

26. a) Let f: R — R be the given function. We are told that f(z1) < f(x2) whenever z; < z2. We need to
show that f(z1) # f(z2) whenever x; # x5. This follows immediately from the given conditions, because
without loss of generality, we may assume that x; < zs.

b) We need to make the function increasing, but not strictly increasing, so, for example, we could take the
trivial function f(z) = 17. If we want the range to be all of R, we could define f in parts this way: f(z) ==z
for £ < 0; f(x) =0 for 0 <z <1;and f(z)=xz—1 for x > 1.

28. For the function to be invertible, it must be a one-to-one correspondence. This means that it has to be
one-to-one, which it is, and onto, which it is not, because, its range is the set of positive real numbers, rather
than the set of all real numbers. When we restrict the codomain to be the set of positive real numbers, we get
an invertible function. In fact, there is a well-known name for the inverse function in this case—the natural
logarithm function (g(z) =Inz).

30. In all parts, we simply need to compute the values f(—1), f(0), f(2), f(4), and f(7) and collect the values
into a set.

a) {1} (all five values are the same) b) {-1,1,5,8,15} c) {0,1,2} d) {0,1,5,16}
32. a) the set of even integers b) the set of positive even integers c) the set of real numbers

34. To clarify the setting, suppose that g: A — B and f: B — C, so that fog: A — C. We will prove that if
f o g is one-to-one, then g is also one-to-one, so not only is the answer to the question “yes,” but part of the
hypothesis is not even needed. Suppose that g were not one-to-one. By definition this means that there are
distinct elements a; and as in A such that g(a;) = g(az). Then certainly f(g(a1)) = f(g(az2)), which is the
same statement as (f o g)(a1) = (f o g)(az). By definition this means that f o g is not one-to-one, and our
proof is complete.

36. We have (f 0 g)(x) = f(g(@)) = f(+2) = (¢ +2)> + 1 = a® + 4z + 5, whereas (g0 f)(x) = g(f(z)) =
g(z? +1) =22 + 1+ 2 = 22 + 3. Note that they are not equal.

38. Forming the compositions we have (fog)(x) = acx+ad+b and (go f)(x) = cax + cb+d. These are equal if
and only if ad+b = cb+d. In other words, equality holds for all 4-tuples (a, b, ¢,d) for which ad+b = cb+d.

40. a) This really has two parts. First suppose that b isin f(SUT). Thus b = f(a) for some a € SUT. Either
a € S, in which case b € f(5), or a € T, in which case b € f(T'). Thus in either case b € f(S)U f(T). This
shows that f(SUT) C f(S)U f(T). Conversely, suppose b € f(S)U f(T). Then either b € f(S) or b e f(T).
This means either that b = f(a) for some a € S or that b = f(a) for some a € T'. In either case, b = f(a)
for some a € SUT,s0 be f(SUT). This shows that f(S)U f(T) C f(SUT), and our proof is complete.
b) Suppose b € f(SNT). Then b = f(a) for some a € SNT. This implies that a € S and a € T, so we
have b € f(S) and b € f(T). Therefore b € f(S)N f(T), as desired.
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42. a) The answer is the set of all solutions to z? = 1, namely {1,—1}.
b) In order for 2 to be strictly between 0 and 1, we need z to be either strictly between 0 and 1 or strictly
between —1 and 0. Therefore the answer is {z | -1 <z <0V O0<z<1}.
c) In order for 2% to be greater than 4, we need either x > 2 or # < —2. Therefore the answer is
{z|z>2Vae<-2}.

44. a) We need to prove two things. First suppose x € f~1(SUT). This means that f(x) € SUT. Therefore
either f(z) € S or f(z) € T. In the first case z € f~1(9), and in the second case = € f~(T). In either case,
then, z € f~1(S) U f~1(T). Thus we have shown that f~1(SUT) C f~1(S)U f~}(T). Conversely, suppose
that z € f~1(S)U f~1(T). Then either x € f~1(S) or x € f~1(T), so either f(x) € S or f(x) € T. Thus we
know that f(z) € SUT, so by definition z € f~1(SUT). This shows that f~1(S)uU f~4T) C f~Y(SUT),
as desired.

b) This is similar to part (a). We have x € f~1(SNT) if and only if f(x) € SNT, if and only if f(x) € S
and f(z) € T, if and only if x € f~1(S) and = € f~1(T), if and only if z € f~1(S) N f~1(T).

46. There are three cases. Define the “fractional part” of z to be f(x) =x — |z]. Clearly f(x) is always between
0 and 1 (inclusive at 0, exclusive at 1), and @ = |z |+ f(x). If f(z) is less than 3, then z+ 3 will have a value
slightly less than [x] + 1, so when we round down, we get |z|. In other words, in this case |z + ] = |z],
and indeed that is the integer closest to z. If f(z) is greater than %, then x + % will have a value slightly
greater than [x] +1, so when we round down, we get [z] + 1. In other words, in this case |z + 1] = 2] +1,
and indeed that is the integer closest to z in this case. Finally, if the fractional part is exactly %, then x is
midway between two integers, and |z + %J = |x| + 1, which is the larger of these two integers.

48. If = is not an integer, then [z] is the integer just larger than x, and |z] is the integer just smaller than x.
Clearly they differ by 1. If = is an integer, then [z] — |2] =2 — 2 = 0.

50. Write £ = n — ¢, where n is an integer and 0 < e < 1; thus [z] =n. Then [x4+m] =[n—e+m] =n+m =
[2] + m. Alternatively, we could proceed along the lines of the proof of property 4a of Table 1, shown in the
text.

52. a) The “if” direction is trivial, since x < [x]. For the other direction, suppose that * < n. Since n is an
integer no smaller than x, and [x] is by definition the smallest such integer, clearly [z] < n.
b) The “if” direction is trivial, since || < x. For the other direction, suppose that n < x. Since n is an
integer not exceeding x, and |z| is by definition the largest such integer, clearly n < |x].

54. To prove the first equality, write = n — ¢, where n is an integer and 0 < € < 1; thus [z] = n. Therefore,
|—z] = |—n+¢€] = —n = —[z]. The second equality is proved in the same manner, writing = n + €, where
n is an integer and 0 < e < 1. This time |z| =n, and [—z]| =[-n—€| = —n = —|z].

56. In some sense this question is its own answer—the number of integers between a and b, inclusive, is the
number of integers between a and b, inclusive. Presumably we seek an expression involving a, b, and the
floor and/or ceiling function to answer this question. If we round a up and round b down to integers, then
we will be looking at the smallest and largest integers just inside the range of integers we want to count,
respectively. These values are of course [a] and |b], respectively. Then the answer is |b] — [a] + 1 (just
think of counting all the integers between these two values, including both ends—if a row of fenceposts one
foot apart extends for k feet, then there are k4 1 fenceposts). Note that this even works when, for example,
a=0.3 and b=0.7.
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58.

60.

62.

64.

66.

68.

Since a byte is eight bits, all we are asking for in each case is [n/8], where n is the number of bits.
a) [4/8] =1 b) [10/8] =2 c) [500/8] =63 d) [3000/8] =375

From Example 28 we know that one ATM cell is 53 bytes, or 53 - 8 = 424 bits long. Thus in each case we
need to divide the number of bits transmitted in 10 seconds by 424 and round down.

a) In 10 seconds, this link can transmit 128,000-10 = 1,280,000 bits. Therefore the answer is |1,280,000/424 ] =
3018.

b) In 10 seconds, this link can transmit 300,000-10 = 3,000,000 bits. So the answer is |3,000,000/424| = 7075.

c¢) In 10 seconds, this link can transmit 1,000,000 - 10 = 10,000,000 bits. So the answer is |10,000,000/424| =
23,584.

The graph consists of the points (n,1 —n?) for all n € Z. The picture shows part of the graph on the usual
coordinate axes.

The graph is similar to the graph of f(x) = |z]; the only difference is a change in the scale of the z-axis.

-

2 1 1 2 3 4
—l-l

The function values for this step function change only at integer values of x, and different things happen for

odd z and for even x because of the z/2 term. Whatever jump pattern is established on the closed interval
[0,2] must repeat indefinitely in both directions. A thoughtful analysis then yields the following graph.

-3 -2 -1

o) +4

a) We can rewrite this as f(z) = [3(z — 2)]. The graph will therefore look look exactly like the graph of the
function f(z) = [3z], except that the picture will be shifted to the right by 2 unit, since « has been replaced
by = — % The graph of f(x) = [3x] is just like the graph shown in Figure 10b, except that the z-axis needs
to be rescaled by a factor of 3 (the first jump on the positive z-axis occurs at « = § here). Putting this all
together yields the following picture. (Alternatively, we can think of this as the graph of f(z) = [3z] shifted
down 2 units, since [3z — 2] = [3z] —2.)
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b) The graph will look exactly like the graph shown in Figure 10b, except that the x-axis needs to be rescaled
by a factor of 5 (the first jump on the positive z-axis occurs at = =5 here).

¢) Since |—1/x| = —[1/x] (see Exercise 54), the picture is just the picture for Exercise 67d flipped upside
down.

d) The basic shape is the parabola, y = 2%. However, because of the greatest integer function, the curve is
broken into steps, with jumps at = = +1, +v/2, £1/3,.... Note the symmetry around the y-axis.

* L
o» ©
o 0
o «
o )
o 4+ -0
= -0
=t -0
O =0

e) The basic shape is the parabola, y = 2%/4. However, because of the step functions, the curve is broken
into steps. For = an even integer, f(x) = x/4, since the terms inside the floor and ceiling function symbols

are integers. Note how these are isolated point, as in Exercise 67f.
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72.
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f) When z is an even integer, this is just z. When z is between two even integers, however, this has the
value of the odd integer between them. The graph is therefore as shown here.

g) Despite the complicated-looking formula, this is not too hard. Note that the expression inside the outer floor
function symbols is always going to be an integer plus % ; therefore we can tell exactly what its rounded-down
value will be, namely 2[x/2]. This is just the graph in Figure 10b, rescaled on both axes.

This follows immediately from the definition. We want to show that ((fog)o (g7 o f71))(z) = z for all
z€ Z and that ((g7' o f™')o(fog))(x) == for all z € X. For the first we have

(feg)olg o f M))(z)=(fog)g™ o f)(2)

The second equality is similar.

If f is one-to-one, then every element of A gets sent to a different element of B. If in addition to the range
of A there were another element in B, then |B| would be at least one greater than |A|. This cannot happen,
so we conclude that f is onto. Conversely, suppose that f is onto, so that every element of B is the image
of some element of A. In particular, there is an element of A for each element of B. If two or more elements
of A were sent to the same element of B, then |A| would be at least one greater than the |B|. This cannot
happen, so we conclude that f is one-to-one.
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74. a) This is true. Since [z] is already an integer, |[z]] = [z].

76.

78.

80.

b) A little experimentation shows that this is not always true. To disprove it we need only produce a
counterexample, such as * =y = %. In this case the left-hand side is [3/2] = 1, while the right-hand side is
0+0=0.

c) A little trial and error fails to produce a counterexample, so maybe this is true. We look for a proof.
Since we are dividing by 4, let us write x = 4n + k, where 0 < k < 4. In other words, write x in terms of
how much it exceeds the largest multiple of 4 not exceeding it. There are three cases. If £ = 0, then x is
already a multiple of 4, so both sides equal n. If 0 < k < 2, then [z/2] = 2n + 1, so the left-hand side is
[n+ %] =n+1. Of course the right-hand side is n+ 1 as well, so again the two sides agree. Finally, suppose
that 2 < k < 4. Then [2/2] = 2n + 2, and the left-hand side is [n + 1] = n + 1; of course the right-hand
side is still n + 1, as well. Since we proved that the two sides are equal in all cases, the proof is complete.

d) For x = 8.5, the left-hand side is 3, whereas the right-hand side is 2.

e) This is true. Write x = n+ ¢ and y = m + §, where n and m are integers and € and ¢ are nonnegative
real numbers less than 1. The left-hand side is n+m + (n+m) or n+m+ (n+m+ 1), the latter occurring
if and only if e+ 8§ > 1. The right-hand side is the sum of two quantities. The first is either 2n (if € < %)
or 2n+1 (if € > 1). The second is either 2m (if § < ) or 2m + 1 (if § > %). The only way, then, for the
left-hand side to exceed the right-hand side is to have the left-hand side be 2n + 2m + 1 and the right-hand
side be 2n + 2m. This can occur only if e+ 6 > 1 while € < % and 6 < % But that is an impossibility, since
the sum of two numbers less than % cannot be as large as 1. Therefore the right-hand side is always at least
as large as the left-hand side.

A straightforward way to do this problem is to consider the three cases determined by where in the interval
between two consecutive integers the real number x lies. Certainly every real number z lies in an interval
[n,n + 1) for some integer n; indeed, n = |[z|. (Recall that [s,t) is the notation for the set of real numbers
greater than or equal to s and less than t.) If z € [n,n + %), then 3z lies in the interval [3n,3n + 1),
so |3z] = 3n. Moreover in this case = + % is still less than n 4+ 1, and = + % is still less than n 4+ 1, so
lz] + v+ 3]+ [+ 2] =n+n+n=3n as well. For the second case, we assume that € [n+ +,n+ 2).
This time 3z € [3n + 1,3n +2), so [3z] = 3n + 1. Moreover in this case  + § is in [n+ 2,n 4 1), and
r4+2isin [n+1,n+3),s0 [z +|z+3]+|e+3] =n+n+(n+1)=3n+1 as well. The third case,
x€n+ %, n+ 1), is similar, with both sides equaling 3n + 2.

a) We merely have to remark that f* is well-defined by the rule given here. For each a € A, either a is in the
domain of definition of f or it is not. If it is, then f*(a) is the well-defined element f(a) € B, and otherwise
f*(a) = u. In either case f*(a) is a well-defined element of B U {u}.

b) We simply need to set f*(a) = u for each a not in the domain of definition of f. In part (a), then,
f*(n)=1/n for n # 0, and f*(0) = w. In part (b) we have a total function already, so f*(n) = [n/2] for all
n € Z. In part (c) f*(m,n) =m/n if n# 0, and f*(m,0) = u for all m € Z. In part (d) we have a total
function already, so f*(m,n) = mn for all values of m and n. In part (e) the rule only applies if m > n, so
ffim,n)=m—nif m>n,and f*(m,n) =uif m <n.

For the “if” direction, we simply need to note that if S is a finite set, with cardinality m , then every proper
subset of S has cardinality strictly smaller than m, so there is no possible one-to-one correspondence between
the elements of S and the elements of the proper subset. (This is essentially the pigeonhole principle, to be
discussed in Section 6.2.)

The “only if” direction is much deeper. Let S be the given infinite set. Clearly S is not empty, because
by definition, the empty set has cardinality 0, a nonnegative integer. Let ag be one element of S, and let
A =S5 —{ag}. Clearly A is also infinite (because if it were finite, then we would have |S| = |A|+ 1, making



Section 2.4 Sequences and Summations 53

S finite). We will now construct a one-to-one correspondence between S and Aj; think of this as a one-to-one
and onto function f from S to A. (This construction is an infinite process; technically we are using something
called the Axiom of Choice.) In order to define f(ag), we choose an arbitrary element a; in A (which is
possible because A is infinite) and set f(ap) = a1. Next we define f at a;. To do so, we choose an arbitrary
element as in A — {a1} (which is possible because A — {a;} is necessarily infinite) and set f(a;) = as. Next
we define f at ay. To do so, we choose an arbitrary element a3z in A — {a1,as} (which is possible because
A —{ay,as} is necessarily infinite) and set f(az) = a3. We continue this process forever. Finally, we let f
be the identity function on S — {ag, a1, az,...}. The function thus defined has f(a;) = a;41 for all natural
numbers i and f(xz) = x for all x € S — {ag,a1,a2,...}. Our construction forced f to be one-to-one and

onto.

SECTION 2.4 Sequences and Summations

2.

10.

In each case we just plug n = 8 into the formula.
a) 2871 =128 b) 7 c) 1+ (-1)¥=0 d) —(—2)8 = —256

ca)ag=(-2)0=1,a1=(-2)'=-2, a0 =(-2? =4, a3 = (-2)> = -8

b) a(]:a1:a2:a3:3
c) ap=T+4"=8, a1 =T+4' =11, a0 =7T+42=23, a3 =7+4> =171
d) ag=2"4+(-2°=2,a;=2"4+(-2)' =0, a2 =22+ (-2)2 =8, a3 = 2% + (-2)* =0

These are easy to compute by hand, calculator, or computer.

a) 10,7, 4,1, -2, =5, -8, —11, —14, —17

b) We can use the formula in Table 2, or we can just keep adding to the previous term (1+2 =3, 3+3 =6,
6+ 4 =10, and so on): 1, 3, 6, 10, 15, 21, 28, 36, 45, 55. These are called the triangular numbers.

c) 1, 5, 19, 65, 211, 665, 2059, 6305, 19171, 53025

d) 1,1,1,2,2,2,2, 2 3, 3 (there will be 2k + 1 copies of k) e) 1, 5,6, 11, 17, 28, 45, 73, 118, 191

f) The largest number whose binary expansion has n bits is (11...1)s, which is 2™ — 1. So the sequence is
1, 3, 7, 15, 31, 63, 127, 255, 511, 1023.

g) 1,2,2 4,8 11,33,37, 148,153  h)1,2,2,2,2 3,3,3,3,3

One rule could be that each term is 2 greater than the previous term; the sequence would be 3, 5, 7, 9, 11,
13, ... . Another rule could be that the n'" term is the n*" odd prime; the sequence would be 3, 5, 7, 11, 13,
17, ... . Actually, we could choose any number we want for the fourth term (say 12) and find a third degree
polynomial whose value at n would be the n'" term; in this case we need to solve for A, B, C', and D in
the equations y = Az® + Bx? + Cx + D where (1,3), (2,5), (3,7), (4,12) have been plugged in for z and y.
Doing so yields (z® — 622 + 152 — 4)/2. With this formula, the sequence is 3, 5, 7, 12, 23, 43, 75, 122, 187,
273. Obviously many other answers are possible.

In each case we simply plug n = 0,1,2,3,4,5, using the initial conditions for the first few and then the
recurrence relation.

a) ap=-1, a1 = —2a9 =2, ag = —2a; = —4, a3 = —2a3 =8, a4 = —2a3 = —16, a5 = —2a4 = 32

b) aqp=2,a1=-1,a=a1—ay=-3,a3=ax—a1=-2,a1=a3—ay=1, a5 =a4 —az3 =3

c) ap =1, a; = 3a2 = 3, ay = 3a? = 27 = 33, a3 = 3a3 = 2187 = 37, a4 = 3a3 = 14348907 = 315,
as = 3a3 = 617673396283947 = 331

d) ap=-1, a1 =0, a2:2a1+a(2):1, a3:3a2—|—a%:3, a4=4a3+a%:13, a5=5a4—|—a§=74

e)ag=1,a1=1,a3=2,a3=a3—a1+ap=2,a4=a3—ax+a1=1,a5=as—az+az =1
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a) —3ap-1 +4a,2=-3-0+4-0=0=a, b) —3ap_1 +4ap_2=-3-1+4-1=1=a,
€) —3ap_1+4an_o=—3-(—4)" 1 +4-(—4)"% = (—4)"2((=3)(—4) +4) = (—4)"2 16 = (—4)"2(-4)? =
(—4)" = an

d) —3a,-1 +4ap—2 = -3 (2(-4)" 1 +3) +4- (2(-49)" 2 +3) = (—4)"2((-6)(—4) +4-2) =9+ 12
(—4)"72.3243=(—4)""2(-4)?.2+3=2-(-4)"+3=a,

In each case, one possible answer is just the equation as presented (it is a recurrence relation of degree 0).
We will give an alternate answer.

a) One possible answer is a,, = a,—1 .

b) Note that a, — an—1 = 2n — (2n — 2) = 2. Therefore we have a,, = a,,—1 + 2 as one possible answer.

c¢) Just as in part (b), we have a, = a,—1 + 2.

d) Probably the simplest answer is a,, = 5a,—1 .

e) Since a, —a,_ 1 =n%?— (n—1)? =2n — 1, we have a,, = a,_1 +2n — 1.

f) This is similar to part (e). One answer is a, = a,—1 + 2n.

g) Note that a, —a,_1 =n+(—1)"—(n—1)—(=1)""1 = 1+2(~1)". Thus we have a,, = a,,_1 +1+2(—1)".

h) a, =na,—1

In the iterative approach, we write a,, in terms of a,,—1, then write a,,_1 in terms of a,,_5 (using the recurrence
relation with n — 1 plugged in for n), and so on. When we reach the end of this procedure, we use the given
initial value of ag. This will give us an explicit formula for the answer or it will give us a finite series, which
we then sum to obtain an explicit formula for the answer.

a) a, = —a, 1= (—12%a,_0="--=(=1)"p_p = (=1)"ag =5- (—=1)"
b) a,=3+an-1=3+3+ap,2=2-3+a,2=3-3+a,3=--=n-3+a,—n=n-3+ao=3n+1
c) Un = =N+ Qp_1

=-n+(—-(n—1)+ap2)=—(n+(n—-1)) +an—
=—(n+Mn-1))+(-n—2)+an3)=—(n+n—-1)+(n—2)) +an_s

(n n-1)+Mm-=2)+-+n—-(n-1)))+ayn
=—(n+(n-1)+Mm=-2)+-+1)+ao
_ ~n(n+ . )+4: —n2—2n—|—8
d) ap = —3+2a,_1
— 34 2(=3+42an_2) = —3+2(—3) + da,_»
— 34 2(=3) + 4(=3 + 2an_3) = =3+ 2(—3) + 4(—3) + 8an_s

=—-3+4+2(—-3)+4(-3)+8(—3+ 2ap_4) = =3+ 2(—3) + 4(—3) + 8(—3) + 16a,_4

= 31 +2+4+---+2")+ 2", = 32" —1) +2"(~1) = —2""2 +3
e) ap =M+ 1ap—1=m+ 1)na,—o
=n+1)nn—1a,—3=n+1)nn—1)(n— 2)a,_q4

=n+1)nn—1)n-2)n—-3)---(n—(n—2))an-n
=n+1nn-1)(n-2)
=Mm+1!-2=2(n+1)
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f) Un = 2N0n 1
= 2n(2(n — 1)an_2) =22 (n(n - 1))an_2
=2%(n(n—1))(2(n — 2)an—3) = 2*(n(n — 1)(n — 2))a,—3

=2"n(n—1)(n—2)(n—3)-- (n—(n—1))an_n
=2"n(n—1)(n—2)(n—3)---1-ag
=3-2"n!

g) an=n—1—a,_1
:n—l—((n—l—l)—an,g):(n—l)—(n—2)+an,2
=m-1)—-n-2)+((n-2-1)—an—3)=Mn—-1)—(n—2)+ (n—3) — an_3

(=1 = (n=2)+ -+ + (=)' = 1) + (1)
o — 1+ (—1)"

S Ay G O
4 (D)

a) The amount after n —1 years is multiplied by 1.09 to give the amount after n years, since 9% of the value
must be added to account for the interest. Thus we have a,, = 1.09a,,_1. The initial condition is ag = 1000.
b) Since we multiply by 1.09 for each year, the solution is a,, = 1000(1.09)™.

c) aigo = 1000(1.09)1% ~ $5,529,041

This is just like Exercise 18. We are letting a,, be the population, in billions of people, n years after 2010.
a) a, = 1.011a,_1, with ag =6.9 b) a, =6.9-(1.011)"
c) az = 6.9-(1.011)%° ~ 8.6 billion people

We let a,, be the salary, in thousands of dollars, n years after 2009.

a) ap, =1+ 1.05a,,—1, with ag = 50

b) Here n = 8. We can either iterate the recurrence relation 8 times, or we can use the result of part (c).
The answer turns out to be approximately ag = 83.4, i.e., a salary of approximately $83,400.

c) We use the iterative approach.
an, =1+ 1.05a,_1
=1+ 1.05(1 + 1.05a,,_2)
=1+ 1.05+ (1.05)%a,_»

=1+1.05+ (1.05)% + - + (1.05)" " + (1.05)"ag
(1.05)" — 1

= - (1.05)"
o5 7 T (1.05)

=70 (1.05)" — 20

a) Each month our account accrues some interest that must be paid. Since the balance the previous month
is B(k — 1), the amount of interest we owe is (r/12)B(k — 1). After paying this interest, the rest of the
P dollar payment we make each month goes toward reducing the principle. Therefore we have B(k) =
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B(k—1)— (P —(r/12)B(k — 1)). This can be simplified to B(k) = (1 + (r/12))B(k — 1) — P. The initial
condition is that B(0) = the amount borrowed.

b) Solving this by iteration yields
B(k) = (14 (r/12))¥(B(0) — 12P/r) 4 12P/r.
Setting B(k) = 0 and solving this for & yields the desired value of T after some messy algebra, namely

_ log(—12P/(B(0)r — 12P))

T log(1 + (r/12))

a) The first term is 3, and the n*" term is obtained by adding 2n — 1 to the previous term. In other words,
we successively add 3, then 5, then 7, and so on. Alternatively, we see that the n'" term is n? 4 2; we can see
this by inspection if we happen to notice how close each term is to a perfect square, or we can fit a quadratic
polynomial to the data. The next three terms are 123, 146, 171.

b) This is an arithmetic sequence whose first term is 7 and whose difference is 4. Thus the n'"' term is
74+ 4(n —1) = 4n + 3. Thus the next three terms are 47, 51, 55.

c) The n'* term is clearly the binary expansion of n. Thus the next three terms are 1100, 1101, 1110.

d) The sequence consists of one 1, followed by three 2’s, followed by five 3’s, followed by seven 5’s, and so
on, with the number of copies of the next value increasing by 2 each time, and the values themselves following
the rule that the first two values are 1 and 2 and each subsequent value is the sum of the previous two values.
Obviously other answers are possible as well. By our rule, the next three terms would be 8, 8, 8.

e) If we stare at this sequence long enough and compare it with Table 1, then we notice that the n'" term is
3" — 1. Thus the next three terms are 59048, 177146, 531440.

f) We notice that each term evenly divides the next, and the multipliers are successively 3, 5, 7, 9, 11, and so
on. That must be the intended pattern. One notation for this is to use n!! to mean n(n — 2)(n —4)- - -; thus
the n'! term is (2n — 1)!!. Thus the next three terms are 654729075, 13749310575, 316234143225.

g) The sequence consists of one 1, followed by two 0s, then three 1s, four Os, five 1s, and so on, alternating
between 0Os and 1s and having one more item in each group than in the previous group. Thus six 0’s will
follow next, so the next three terms are 0, 0, 0.

h) Tt doesn’t take long to notice that each term is the square of its predecessor. The next three terms get
very big very fast: 18446744073709551616, 340282366920938463463374607431768211456, and then

115792089237316195423570985008687907853269984665640564039457584007913129639936 .

(These were computed using Maple.)

Let us ask ourselves which is the last term in the sequence whose value is k7 Clearly itis 1+2+3+---+k,
which equals k(k 4+ 1)/2. We can rephrase this by saying that a,, < k if and only if k(k +1)/2 > n. Thus,
to find k as a function of n, we must find the smallest & such that k(k + 1)/2 > n. This is equivalent
to k? +k —2n > 0. By the quadratic formula, this tells us that k has to be at least (=1 + /1 + 8n)/2.

Therefore we have k = [(~1 + I+ 8n)/2] = [—% o fon+ ﬂ . By Exercise 47 in Section 2.3, this is the

same as the integer closest to /2n + i, where we choose the smaller of the two closest integers if {/2n + i

is a half integer. The desired answer is L\/ 2n + %J , which by Exercise 46 in Section 2.3 is the integer closest
to v2n (note that v/2n can never be a half integer). To see that these are the same, note that it can never

happen that v2n <m+ % while 4/2n + i >m+ % for some positive integer m, since this would imply that
m<m24+m+ % and 2n > m? +m, an impossibility. Therefore the integer closest to v/2n and the (smaller)
integer closest to 1/2n + % are the same, and we are done.
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30. a) 1+3+5+7=16 b) 12+ 32 +5%+ 72 =84
c) (1/1)+(1/3) + (1/5) + (1/7) = 176/105 d)1+1+14+1=4

32. a) The terms of this sequence alternate between 2 (if j is even) and 0 (if j is odd). Thus the sum is
24+0+240+24+04+2+0+2=10.
b) We can break this into two parts and compute (Z?:o 3j) - (Z?:o 27 ) . Each summation can be computed
from the formula for the sum of a geometric progression. Thus the answer is
-1 29-1
3-1 2-1

= 9841 — 511 = 9330.

¢) Asin part (b) we can break this into two parts and compute (Z?:O 2-37) + (Z?:o 3-27). Each summation
can be computed from the formula for the sum of a geometric progression. Thus the answer is
2-32-2 3.29-3

= 19682 +1 =21215.
3.1 + 51 9682 + 1533 )

d) This could be worked as in part (b), but it is easier to note that the sum telescopes (see Exercise 35).
Each power of 2 cancels except for the —2° when j = 0 and the 2° when j = 8. Therefore the answer is
29 — 20 = 511. (Alternatively, note that 271 — 2/ =27)

34. We will just write out the sums explicitly in each case.
a) (1-D+(1-2)+2-D)+2-2)+B-1)+((3-2)=3
b) (0+0)+(04+2)+(04+4)+(3+0)+(3+2)+(34+4)+(6+0)+(6+2)+(64+4)+(9+0)+(9+2)+(9+4) =78
c) (0+1+2)+(0+1+2)+(0+14+2)=9

d) (0+0+0+0)+(0+1+8+27)+ (0+4+32+108) =180

36. We use the suggestion (simple algebra shows that this is indeed an identity) and note that all the terms in
the summation cancel out except for the 1/k when k =1 and the 1/(k + 1) when k = n:

n

I o WS U R S N
—k(k+1) —\k k+1) 1 n+l n+l

38. First we note that k3 — (k — 1)3 = 3k — 3k + 1. Then we sum this equation for all values of & from 1 to n.
On the left, because of telescoping, we have just n?; on the right we have

32k2—32k+21—32k2 Llun_
k=1

Equating the two sides and solving for >} he1 k2, we obtain the desired formula.

i 1 1
S =g (o4 2 )
k=1

n M2 +3n+3-2
-3 2
o n (2 4+3n+1\  nn+1)2n+1)
3 2 B 6
40. This exercise is like Example 23. From Table 2 we know that 2200 = 2002 - 2012 /4 = 404,010,000, and

28:1 k3 =982 .992/4 = 23,532,201. Therefore the desired sum is 404,010,000 — 23,532,201 = 380,477,799.
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If we write down the first few terms of this sum we notice a pattern. It starts (1+1+1+14+1+14+1)+ (24
2424+2424+2424+242+24+2+24+24+24+24+24+24+2+2)+(3+3+3+3+---43)+---. There are
seven 1s, then 19 2s, then 37 3s, and so on; in general, the number of i’sis (i + 1) — i3 = 3i2+3i + 1. So we
need to sum i(3i? + 3i + 1) for an appropriate range of values for . We must find this range. It gets a little
messy at the end if m is such that the sequence stops before a complete range of the last value is present. Let
n = |¢/m| — 1. Then there are n + 1 blocks, and (n + 1) — 1 is where the next-to-last block ends. The sum
of those complete blocks is > 1 i(3i2 +3i+1) = > 1 | 3i*+3i*+i = n(3n+4)(n+1)*/4 (using Table 2 and
algebra). The remaining terms in our summation all have the value n + 1 and the number of them present is
m — ((n+1)2 —1). Our final answer is therefore n(3n+4)(n+1)2/4+ (n+1)(m — (n+ 1) + 1), where, once
again, n = | ¢¥/m| — 1.

44. n! = ﬁz
i=1

46.

ONAN2HBH(A) =1-1-2-6-24 = 288

SECTION 2.5 Cardinality of Sets
2. a) This set is countably infinite. The integers in the set are 11, 12, 13, 14, and so on. We can list these

numbers in that order, thereby establishing the desired correspondence. In other words, the correspondence
is given by 1 < 11, 2+ 12, 3 < 13, and so on; in general n < (n + 10).

b) This set is countably infinite. The integers in the set are —1, —3, —5, —7, and so on. We can list these
numbers in that order, thereby establishing the desired correspondence. In other words, the correspondence
is given by 1 < —1, 2+ —3, 3+ —5, and so on; in general n < —(2n —1).

¢) This set is {—999,999, —999,998,...,—1,0,1,...,999,999}. It is finite, with cardinality 1,999,999.

d) This set is uncountable. We can prove it by the same diagonalization argument as was used to prove that
the set of all reals is uncountable in Example 5.

e) This set is countable. We can list its elements in the order (2,1),(3,1),(2,2),(3,2),(2,3),(3,3),..., giving
us the one-to-one correspondence 1« (2,1),2 < (3,1),3 < (2,2),4 < (3,2),5 < (2,3),6 < (3,3),....

f) This set is countable. The integers in the set are 0, +10, £20, £+30, and so on. We can list these numbers
in the order 0, 10, —10, 20, —20, 30, ..., thereby establishing the desired correspondence. In other words,
the correspondence is given by 1 < 0, 2 « 10, 3 « —10, 4 « 20, 5 « —20, 6 < 30, and so on.

. a) This set is countable. The integers in the set are +1, £2, +4, £5, +7, and so on. We can list these numbers

in the order 1, —1, 2, =2, 4, —4, 5, =5, 7, —7, ..., thereby establishing the desired correspondence. In
other words, the correspondence is given by 1« 1, 2 —1, 3+ 2, 4« —2, 5+ 4, and so on.

b) This is similar to part (a); we can simply list the elements of the set in order of increasing absolute value,
listing each positive term before its corresponding negative: 5, —5, 10, —10, 15, —15, 20, —20, 25, —25,
30, —30, 40, —40, 45, —45, 50, =50, ....

c) This set is countable but a little tricky. We can arrange the numbers in a 2-dimensional table as follows:

1 1 A1 A11 111 1111 11111
1.1 1 1.1 1.11 1.111 1.1111 1.11111
11.1 11 11.1 11.11 11.111 111111 11.11111

111.1 111 111.1 111.11 111.111 111.1111 111.11111 ...

Thus we have shown that our set is the countable union of countable sets (each of the countable sets is one
row of this table). Therefore by Exercise 27, the entire set is countable. For an explicit correspondence with
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the positive integers, we can zigzag along the positive-sloping diagonals as in Figure 3: 1 < .1, 2 < 1.1,
3+ .1,4< .11, 5 1, and so on.

d) This set is not countable. We can prove it by the same diagonalization argument as was used to prove that
the set of all reals is uncountable in Example 5. All we need to do is choose d; = 1 when d;; = 9 and choose
d; =9 when d;; =1 or d;; is blank (if the decimal expansion is finite).

. We want a one-to-one function from the set of positive integers to the set of odd positive integers. The simplest

one to use is f(n) = 2n — 1. We put the guest currently in Room n into Room (2n — 1). Thus the guest in
Room 1 stays put, the guest in Room 2 moves to Room 3, the guest in Room 3 moves to Room 5, and so on.

. First we can make the move explained in Exercise 6, which frees up all the even-numbered rooms. The new

guests can go into those rooms (the first into Room 2, the second into Room 4, and so on).

In each case, let us take A to be the set of real numbers.

a) We can let B be the set of real numbers as well; then A — B = @, which is finite.

b) We can let B be the set of real numbers that are not positive integers; in symbols, B = A — Z". Then
A — B =77, which is countably infinite.

c) We can let B be the set of positive real numbers. Then A — B is the set of negative real numbers and 0,
which is certainly uncountable.

The definition of |A| < |B] is that there is a one-to-one function from A to B. In this case the desired

function is just f(xz) = x for each z € A.

If A and B have the same cardinality, then we have a one-to-one correspondence f: A — B. The function f
meets the requirement of the definition that |A| < |BJ|, and f~! meets the requirement of the definition that
|B| < [A].

If a set A is countable, then we can list its elements, a1,as,as,...,a,,... (possibly ending after a finite
number of terms). Every subset of A consists of some (or none or all) of the items in this sequence, and we
can list them in the same order in which they appear in the sequence. This gives us a sequence (again, infinite
or finite) listing all the elements of the subset. Thus the subset is also countable.

The hypothesis gives us a one-to-one and onto function f from A to B. By Exercise 16e in the supplementary
exercises for this chapter, the function Sy from P(A) to P(B) defined by S;(X) = f(X) forall X C A is
one-to-one and onto. Therefore P(A) and P(B) have the same cardinality.

By definition, we have one-to-one onto functions f: A — B and g: B — C. Then go f is a one-to-one onto
function from A to C, so |A| = |C].

If A= @, then the only way for the conditions to be met are that B = () as well, and we are done. So assume
that A is nonempty. Let f be the given onto function from A to B, and let g : ZT — A be an onto function
that establishes the countability of A. (If A is finite rather than countably infinite, say of cardinality k, then
the function ¢ will be defined so that g(1), ¢g(2), ..., g(k) will list the elements of A, and g(n) = g(1) for
n > k.) We need to find an onto function from Z% to B. The function f o g does the trick, because the
composition of two onto functions is onto (Exercise 33b in Section 2.3).

Because |A| < |ZT|, there is a one-to-one function f: A — ZT. We are also given that A is infinite, so the
range of f has to be infinite. We will construct a bijection g from Z* to A. For each n € ZT, let m be the
n*® smallest element in the range of f. Then g(n) = f~!(m). The existence of g contradicts the definition

of |A| < |Z*|, and our proof is complete.
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We can label the rational numbers with strings from the set {0,1,2,3,4,5,6,7,8,9,/,—} by writing down
the string that represents that rational number in its simplest form (no leading 0’s, denominator not 0, no
common factors greater than 1 between numerator and denominator, and the minus sign in front if the number
is negative). The labels are unique. It follows immediately from Exercise 25 that the set of rational numbers
is countable.

We can think of Z1t x Z1 as the countable union of countable sets, where the i*" set in the collection, for
i€Z",is {(i,n) | n € ZT}. The statement now follows from Exercise 27.

There are at most two real solutions of each quadratic equation, so the number of solutions is countable as long
as the number of triples (a,b,c), with a, b, and ¢ integers, is countable. But this follows from Exercise 27
in the following way. There are a countable number of pairs (b, ¢), since for each b (and there are countably
many b’s) there are only a countable number of pairs with that b as its first coordinate. Now for each a (and
there are countably many a’s) there are only a countable number of triples with that a as its first coordinate
(since we just showed that there are only a countable number of pairs (b,¢)). Thus again by Exercise 27 there
are only countably many triples.

We saw in Exercise 31 that ( 2)( 0
m4+n — m-4+n—
f(m7 n) = 2

is a one-to-one function with domain Z* x Z*. We want to expand the domain to be Z x Z, so things

+m

need to be spread out a little if we are to keep it one-to-one. If we can find a one-to-one function g from
Z x 7 to ZT x ZT, then composing these two functions will be our desired one-to-one function from Z x Z
to Z (we know from Exercise 33a in Section 2.3 that the composition of one-to-one functions is one-to-
one). The function suggested here is g(m,n) = ((3m + 1)%,(3n + 1)?), so that the composed function is
(fog)im,n) = (Bm+1)2+Bn+1)2-2)(Bm +1)%2+ Bn+1)2-1)/2+ (3m + 1)2. To see that g is
one-to-one, first note that it is enough to show that the behavior in each coordinate is one-to-one; that is, the
function that sends integer k to positive integer (3k +1)? is one-to-one. To see this, first note that if ky # ko
and k; and ks are both positive or both negative, then (3k; + 1) # (3k2 + 1)2. And if one is nonnegative
and the other is negative, then they cannot have the same images under this function because the nonnegative
integers are sent to squares of numbers that leave a remainder of 1 when divided by 3 (0 — 12, 1 — 42,
2 — 72, ...), but negative integers are sent to squares of numbers that leave a remainder of 2 when divided
by 3 (-1 —2%, -2 5% -3 82 ...).

It suffices to find one-to-one functions f: (0,1) — R and ¢g: R — (0,1). We can obviously use the function
f(z) = x in the first case. For the second, we can compress R onto (0,1) by using the arctangent function,
which is known to be injective; let g(z) = 2arctan(z)/7. It then follows from the Schréder-Bernstein theorem
that [(0,1)| = |R.

We can encode subsets of the set of positive integers as strings of, say, 5’s and 6’s, where the i*" symbol
is a 5 if 4 is in the subset and a 6 otherwise. If we interpret this string as a real number by putting a 0
and a decimal point in front, then we have constructed a one-to-one function from P(Z™) to (0,1). Also, we
can construct a one-to-one function from (0,1) to P(Z+) by sending the number whose binary expansion is
0.d1dads . .. to the set {i | d; = 1}. Therefore by the Schroder-Bernstein theorem we have |P(Z1)| = |(0,1)].
By Exercise 34, |(0,1)] = |R|, so we have shown that |P(ZT)| = |R|. (We already know from Cantor’s
diagonal argument that Ng < |R|.) There is one technical point here. In order for our function from (0,1)
to P(Z+) to be well-defined, we must choose which of two equivalent expressions to represent numbers that
have terminating binary expansions to use (for example, 0.100101 versus 0.100110); we can decide to always
use the terminating form, i.e., the one ending in all 0’s.)
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38. We know from Example 5 that the set of real numbers between 0 and 1 is uncountable. Let us associate to
each real number in this range (including 0 but excluding 1) a function from the set of positive integers to
the set {0,1,2,3,4,5,6,7,8,9} as follows: If z is a real number whose decimal representation is 0.dydads . . .
(with ambiguity resolved by forbidding the decimal to end with an infinite string of 9’s), then we associate
to x the function whose rule is given by f(n) = d,,. Clearly this is a one-to-one function from the set of
real numbers between 0 and 1 and a subset of the set of all functions from the set of positive integers to the
set {0,1,2,3,4,5,6,7,8,9}. Two different real numbers must have different decimal representations, so the
corresponding functions are different. (A few functions are left out, because of forbidding representations such
as 0.239999....) Since the set of real numbers between 0 and 1 is uncountable, the subset of functions we
have associated with them must be uncountable. But the set of all such functions has at least this cardinality,
so it, too, must be uncountable (by Exercise 15).

40. We follow the hint. Suppose that f is a function from S to P(S). We must show that f is not onto. Let
T={seS|s¢ f(s)}. We will show that T is not in the range of f. If it were, then we would have
f(@t) =T for some t € S. Now suppose that ¢ € T'. Then because t € f(t), it follows from the definition of T'
that t ¢ T'; this is a contradiction. On the other hand, suppose that t ¢ T'. Then because t ¢ f(¢), it follows
from the definition of T' that t € T'; this is again a contradiction. This completes our proof by contradiction
that f is not onto. On the other hand, the function sending x to {z} for each x € S is a one-to-one function
from S to P(S), so by Definition 2 |S| < |P(S)|. By the same definition, since |S| = |P(S)| (from what we
have just proved and Definition 1), it follows that |S| < |P(S)].

SECTION 2.6 Matrices

2. We just add entry by entry.
a) 0 3 9 b)

1 4 -1
2 -5 -3

-4 9 2 10
-4 -5 4 0

4. To multiply matrices A and B, we compute the (i, j)'" entry of the product AB by adding all the products of
elements from the i row of A with the corresponding element in the j™ column of B, that is Y} _; aikbk; .
This can only be done, of course, when the number of columns of A equals the number of rows of B (called
n in the formula shown here).

a) [-1 1 0 b) 4 -1 -7 6 c) 2 0 -3 -4 -1
0 1 -1 -7 -5 8 5 24 -7 20 29 2
1 -2 1 4 0 7 3 ~10 4 -17 -24 -3

6. First note that A must be a 3 x 3 matrix in order for the sizes to work out as shown. If we name the elements
of A in the usual way as [a;;], then the given equation is really nine equations in the nine unknowns a;;,
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obtained simply by writing down what the matrix multiplication on the left means:
l-ann+3-an+2-a31="7
cai2+3-ax+2-a3 =1
ca13+3-a3+2-a33 =3
cann+1l-an+1-a3 =1
ca1g+1-ap+1-a3=0
ca13+1-ag3+1-as3=3
ca11+0-az21 +3-az = -1
“a12 +0- a2 +3- a3 = -3
4-a13+0-a3+3-a33="7

B R NN NN R

This is really not as bad as it looks, since each variable only appears in three equations. For example, the
first, fourth, and seventh equations are a system of three equations in the three variables a1, a1, and ag; .

We can solve them using standard algebraic techniques to obtain ay; = —1, as; = 2 and a3y = 1. By similar
reasoning we also obtain a3 = 0, ags = 1 and azs = —1; and a;3 = 1, a3 = 0 and as3 = 1. Thus our
answer is
-1 0 1
A= 2 1 0
1 -1 1

As a check we can carry out the matrix multiplication and verify that we obtain the given right-hand side.

Since the entries of A 4B are a;; + b;; and the entries of B + A are b;; + a;;, that A+B = B + A follows
from the commutativity of addition of real numbers.

a) This product is a 3 X 5 matrix.
b) This is not defined since the number of columns of B does not equal the number of rows of A.
c¢) This product is a 3 x 4 matrix.
d) This is not defined since the number of columns of C does not equal the number of rows of A.
e) This is not defined since the number of columns of B does not equal the number of rows of C.

f) This product is a 4 X 5 matrix.

We use the definition of matrix addition and multiplication. All summations here are from 1 to k.
a) (A +B)C = [} (aiq + big)egs] = [X aigeqj + 3 bigcqj] = AC + BC
b) C(A +B) = [Y ciglags +bg;)] = [3 cigags + X cighy;] = CA+ CB

Let A and B be two diagonal n x n matrices. Let C = [¢;;] be the product AB. From the definition of
matrix multiplication, ¢;; = Y a;qbgj. Now all the terms a;q in this expression are 0 except for ¢ = i, so
cij = azbi;. But by; = 0 unless i = j, so the only nonzero entries of C are the diagonal entries c;; = a;;by; .

The (i, )™ entry of (A!)! is the (j,7)™™ entry of A’, which is the (i, )" entry of A.

We need to multiply these two matrices together in both directions and check that both products are Is.
Indeed, they are.

a) Using Exercise 19, noting that ad — bc = —5, we write down the inverse immediately:

il
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3 4

2 11

. . 2
b) We multiply to obtain A® = [ 9 37

] and then A% = [1 18].

11/25 —4/25 —37/125 18/125
—2/25  3/25 9/125  —1/125|"

d) Applying the method of Exercise 19 for obtaining inverses to the answer in part (b), we obtain the answer
in part (c). Therefore (A%)~! = (A~1)3.

c) We multiply to obtain (A~1)? = [ ] and then (A™1)* = {

A matrix is symmetric if and only if it equals its transpose. So let us compute the transpose of AA* and see
if we get this matrix back. Using Exercise 17b and then Exercise 16, we have (AA")" = ((A")!) A" = AAT,
as desired.

a) We simply note that under the given definitions of A, X, and B, the definition of matrix multiplication
is exactly the system of equations shown.

b) The given system is the matrix equation AX = B. If A is invertible with inverse A~!, then we can
multiply both sides of this equation by A~! to obtain A7'AX = A~'B. The left-hand side simplifies to
IX, however, by the definition of inverse, and this is simply X. Thus the given system is equivalent to the
system X = A~'B, which obviously tells us exactly what X is (and therefore what all the values x; are).

We follow the definitions.

RN F BN

——= O

1
We follow the definition and obtain | 1
1

a) AV A= [aij \Y ai_j] = [aij] =A b) ANA = [ai_j N aij} = [aij] =A

a) (A \ B) vC= [(aij \ b”) \Y Cij} = [aij \Y (bZJ \Y Cij)] =AvV (B V C)
b) This is identical to part (a), with A replacing V.

Since the i*" row of I consists of all 0’s except for a 1 in the (i,7)*™® position, we have I® A = [(0 A a1;) V
-V (1Aay) V-V (0Aan;)] = la;] = A. Similarly, since the 5" column of I consists of all 0’s except for
a 1 in the (j,7)*™® position, we have A © I = [(a;3 AO)V -V (a;; A1)V -V (ain A0)] = [a;;] = A.

SUPPLEMENTARY EXERCISES FOR CHAPTER 2

2.

We are given that A C B. We want to prove that the power set of A is a subset of the power set of B, which
means that if C C A then C' C B. But this follows directly from Exercise 17 in Section 2.1.

.a)Z b) O c) O d) E

. If A C B, then every element in A is also in B, so clearly AN B = A. Conversely, if AN B = A, then every

element of A must also be in AN B, and hence in B. Therefore A C B.

This identity is true, so we must show that every element in the left-hand side is also an element in the
right-hand side and conversely. Let € (A — B) — C. Then x € A — B but x ¢ C'. This means that x € A,
but x ¢ B and = ¢ C'. Therefore x € A — C, and therefore € (A — C') — B. The converse is proved in
exactly the same way.
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The inequality follows from the obvious fact that AN B C AU B. Equality can hold only if there are no
elements in either A or B that are not in both A and B, and this can happen only if A = B.

Since AN B = (AU B), we are asked to show that [(AU B)| = |U| — (JA| + |B| — |[AN BJ). This follows
immediately from the facts that |X| = |U| — |X| (which is clear from the definitions) and (see the discussion
following Example 5 in Section 2.2) that |AU B| = |A| + |B| — |[AN B].

Define a function g : f(S) — S by choosing, for each element x in f(S), an element g(x) € S such that
f(g(z)) = x. Clearly g is one-to-one, so |f(S)| < |S|. Note that we do not need the hypothesis that A and
B are finite.

a) We are given that f is one-to-one, and we must show that S; is one-to-one. So suppose that X; # Xo,
where these are subsets of A. We have to show that S;(X1) # Sp(X2). Without loss of generality there is
an element a € X; — X5. This means that f(a) € Sp(X1). If f(a) were also an element of S;(X5), then we
would need an element a’ € X3 such that f(a’) = f(a). But since f is one-to-one, this forces ¢’ = a, which
is impossible, because a ¢ Xo. Therefore f(a) € S§(X1) — S§(X2), so Sp(X1) # Sp(X2).

b) We are given that f is onto, and we must show that S; is onto. So suppose that ¥ C B. We have to
find X C A such that S¢(X) =Y. Let X ={xz € A| f(z) € Y}. We claim that S;(X) =Y. Clearly
S¢(X) CY. To see that Y C S¢(X), suppose that b € Y. Then because f is onto, there is some a € A such
that f(a) =b. By our definition of X, a € X . Therefore by definition b € S¢(X).

c) We are given that f is onto, and we must show that Sy-1 is one-to-one. So suppose that Y; # Y3, where
these are subsets of B. We have to show that S;-1(Y1) # Sy-1(Y2). Without loss of generality there is an
element b € Y1 —Y,. Because f is onto, there is an a € A such that f(a) =b. Therefore a € Sy-1(Y7). But
we also know that a ¢ Sy-1(Y2), because if a were an element of Sy-1(Y2), then we would have b = f(a) € Y,
contrary to our choice of b. The existence of this a shows that Sp-1(Y7) # Sp-1(Y2).

d) We are given that f is one-to-one, and we must show that Sy-1 is onto. So suppose that X C A. We
have to find Y C B such that S;-1(Y) = X. Let Y = S;(X). In other words, Y = { f(z) [z € X }. We
must show that S;-1(Y) = X, which means that we must show that {u € A| f(u) € { f(z) |z € X}} =X
(we changed the dummy variable to u for clarity). That the right-hand side is a subset of the left-hand side
is immediate, because if © € X, then f(u) is an f(z) for some x € X . Conversely, suppose that u is in the
left-hand side. Thus f(u) = f(zo) for some zy € X. But because f is one-to-one, we know that u = xg;
that is v e X.

e) This follows immediately from the earlier parts, because to be a one-to-one correspondence means to be
one-to-one and onto.

If n is even , then n/2 is an integer, so [n/2]+|n/2] = (n/2)+(n/2) = n. If n is odd, then [n/2] = (n+1)/2
and |n/2] = (n—1)/2, so again the sum is n.

This is certainly true if either x or y is an integer, since then this equation is equivalent to the identity (4b)
in Table 1 of Section 2.3. Otherwise, write = and y in terms of their integer and fractional parts: z =n+¢
and y =m+ 6, where n = [z], 0 <e<1, m=|y|],and 0 < é < 1. If 6+ € > 1, then the equation is
true, since both sides equal m +n + 2; if 6 + ¢ < 1, then the equation is false, since the left-hand side equals
m +n—+ 1, but the right-hand side equals m 4+ n 4+ 2. To summarize: the equation is true if and only if either
at least one of x and y is an integer or the sum of the fractional parts of x and y exceeds 1.

The values of the floor and ceiling function will depend on whether their arguments are integral or not. So
there seem to be two cases here. First let us suppose that n is even. Then n/2 is an integer, and n?/4
is also an integer, so the equation is a simple algebraic fact. The second case is harder. Suppose that n is
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odd, say n = 2k + 1. Then n/2 = k + 5. Therefore the left-hand side gives us k(k 4+ 1) = k* + k, since
we have to round down for the first factor and round up for the second. What about the right-hand side?
n?=(2k+1)? =4k®> + 4k + 1, so n*/4 = k> + k + 1. Therefore the floor function gives us k? + k, and the
proof is completed.

24. Since we are dividing by 4, let us write * = 4n — k, where 0 < k < 4. In other words, write x in terms of
how much it is less than the smallest multiple of 4 not less than it. There are three cases. If £k =0, then z
is already a multiple of 4, so both sides equal n. If 0 < k < 2, then |2/2] = 2n — 1, so the left-hand side is
[n— %J =n—1. Of course the right-hand side is n — 1 as well, so again the two sides agree. Finally, suppose
that 2 < k < 4. Then |z/2] = 2n — 2, and the left-hand side is [n — 1] = n — 1; of course the right-hand

side is still n — 1, as well. Since we proved that the two sides are equal in all cases, the proof is complete.

26. If x is an integer, then of course the two sides are identical. So suppose that z = k + ¢, where k is an integer
and € is a real number with 0 < € < 1. Then the values of the left-hand side, which is |(k +n)/m], and the
right-hand side, which is |[(k + n + €)/m], are the same, since adding a number strictly between 0 and 1 to
the numerator of a fraction whose numerator and denominator are integers cannot cause the fraction to reach
the next higher integer value (the numerator cannot reach the next multiple of m).

28. a) 1,2,3,4,6,8,11,13,16, 18, 26, 28, 36, 38,47, 48,53, 57,62, 69
b) Suppose there were only a finite set of Ulam numbers, say u; < us < -+- < u,. Then it is clear that
Uyp_1+ U, can be written uniquely as the sum of two distinct Ulam numbers, so this is an Ulam number larger
than wu,, , a contradiction. Therefore there are an infinite number of Ulam numbers.

30. If we work at this long enough, we might notice that each term after the first three is the sum of the previous
three terms. With this rule the next four terms will be 169, 311, 572, 1052. One way to use the power of
technology here is to submit the given sequence to The On-Line Encyclopedia of Integer Sequences (oeis.org).

32. We know that the set of rational numbers is countable. If the set of irrational numbers were also countable,
then the union of these two sets would also be countable by Theorem 1 in Section 2.5. But their union, the
set of real numbers, is known to be uncountable. This contradiction tells us that the set of irrational numbers
is not countable.

34. A finite subset of ZT has a largest element and therefore is a subset of {1,2,3,...,n} for some positive
integer n. Let S, be the set of subsets of {1,2,3,...,n}. It is finite and therefore countable; in fact
|Sn| = 2™. The set of all finite subsets of ZT is the union |J,_, S,. Being a countable union of countable
sets, it is countable by Exercise 27 in Section 2.5.

36. This follows immediately from Exercise 35, because C can be identified with R x R by sending the complex
number a + bi, where a and b are real numbers, to the ordered pair (a,b).

38. Since A is the matrix defined by a; = ¢ and a;; = 0 for ¢ # j, it is easy to see from the definition of
multiplication that AB and BA are both the same as B except that every entry has been multiplied by c.
Therefore these two matrices are equal.

40. We simply need to show that the alleged inverse of AB has the correct defining property—that its product
with AB (on either side) is the identity. Thus we compute
(AB(BT'A™H=ABB HA 1= ATA ' =AA ' =T,
and similarly (B"*A~!)(AB) = I. Therefore (AB)~! = B"*A~!. (Note that the indicated matrix multi-

plications were all defined, since the hypotheses implied that both A and B were n x n matrices for some
(and the same) n.)
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SECTION 3.1 Algorithms

2.

10.

12.

a) This procedure is not finite, since execution of the while loop continues forever.

b) This procedure is not effective, because the step m := 1/n cannot be performed when n = 0, which will
eventually be the case.

¢) This procedure lacks definiteness, since the value of i is never set.

d) This procedure lacks definiteness, since the statement does not tell whether x is to be set equal to a or
to b.

Set the answer to be —oo. For 4 going from 1 through n — 1, compute the value of the (i + 1)%* element in
the list minus the i*" element in the list. If this is larger than the answer, reset the answer to be this value.

. We need to go through the list and count the negative entries.

procedure negatives(ay, as, . .., a, : integers)
k=0
fori:=1ton
if a; <0 then k:=k+1
return k {the number of negative integers in the list }

. This is similar to Exercise 7, modified to keep track of the largest even integer we encounter.

procedure largest even location(ay,as, ..., a, : integers)
k=0
largest :== —o0

for i:=1ton
if (a; is even and a; > largest) then
k:=1
largest == a;
return k {the desired location (or 0 if there are no evens) }

We assume that if the input x = 0, then n > 0, since otherwise x™ is not defined. In our procedure, we let

m

m = |n| and compute z™ in the obvious way. Then if n is negative, we replace the answer by its reciprocal.

procedure power(z : real number, n : integer)
m = |n|
power :=1
fori:=1tom
power 1= power - T
if n < 0 then power := 1/power
return power { power = z™}

Four assignment statements are needed, one for each of the variables and a temporary assignment to get
started so that we do not lose one of the original values.
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temp (= x
Ti=y
Y=z
z = temp

14. a) With linear search we start at the beginning of the list, and compare 7 successively with 1, 3, 4, 5, 6, 8,

9, and 11. When we come to the end of the list and still have not found 7, we conclude that it is not in the
list.
b) We begin the search on the entire list, with ¢ = 1 and j = n = 8. We set m := 4 and compare 7 to
the fourth element of the list. Since 7 > 5, we next restrict the search to the second half of the list, with
i =>5 and j = 8. This time we set m := 6 and compare 7 to the sixth element of the list. Since 7 % 8, we
next restrict ourselves to the first half of the second half of the list, with ¢ =5 and j = 6. This time we set
m := 5, and compare 7 to the fifth element. Since 7 > 6, we now restrict ourselves to the portion of the list
between i = 6 and j = 6. Since at this point i £ j, we exit the loop. Since the sixth element of the list is
not equal to 7, we conclude that 7 is not in the list.

16. We let min be the smallest element found so far. At the end, it is the smallest element, since we update it as
necessary as we scan through the list.

procedure smallest(ay,as, . .., a, : natural numbers)
min = a
for i:=2ton
if a; < min then min := a;
return min {the smallest integer among the input }

18. This is similar to Exercise 17.

procedure last smallest(ay,as,...,a, : integers)
min = a
location =1
for i:=2ton
if min > a; then
min = a;
location =1
return location {the location of the last occurrence of the smallest element in the list }

20. We just combine procedures for finding the largest and smallest elements.

procedure smallest and largest(ay,as, ..., a, : integers)
min = a
mazr := a

for i:=2ton
if a; < min then min := a;
if a; > mazr then mazx := q;
{ min is the smallest integer among the input, and maz is the largest }

22. We assume that the input is a sequence of symbols, a1, as, ..., an, each of which is either a letter or a blank.
We build up the longest word in word; its length is length. We denote the empty word by .
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procedure longest word(ay,as, ..., a, : symbols)
maxlength := 0
mazword := \

i:=1

while 1 < n
word := A
length :=0

while a; # blank and i <n
length := length + 1
word := concatenation of word and a;
1:=1+1

if length > max then
mazxlength := length
mazword := word

1:=1+1

return mazword {the longest word in the sentence }

This is similar to Exercise 23. We let the array hit keep track of which elements of the codomain B have
already been found to be images of elements of the domain A. When we find an element that has already
been hit being hit again, we conclude that the function is not one-to-one.

procedure one_one(f : function, ay, as, ..., an,b1,ba,. .., by, : integers)
for i:=1tom
hit(b;) =0

one_one := true

for j:=1ton
if hit(f(a;)) =0 then hit(f(a;)) =1
else one_one := false

return one_one

There are two changes. First, we need to test = a,, (right after the computation of m) and take appropriate
action if equality holds (what we do is set ¢ and j both to be m). Second, if & % a,,, then instead of setting
j equal to m, we can set j equal to m — 1. The advantages are that this allows the size of the “half” of the
list being looked at to shrink slightly faster, and it allows us to stop essentially as soon as we have found the

element we are looking for.

This could be thought of as just doing two iterations of binary search at once. We compare the sought-after
element to the middle element in the still-active portion of the list, and then to the middle element of either
the top half or the bottom half. This will restrict the subsequent search to one of four sublists, each about
one-quarter the size of the previous list. We need to stop when the list has length three or less and make

explicit checks. Here is the pseudocode.
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procedure tetrary search(x : integer, a1, as, .. ., a, : increasing integers)
1:=1
ji=n
while ¢ < j —2
L= ((i+5)/4)
m = (i +j)/2)
wi=|3(i +j)/4]
if z > a,, then if x < a, then
1:=m+1
Jji=u
else i:=u+1
else if x > a; then
=141
ji=m
else j:=1
if x = a; then location := 1
else if x = a; then location := j
else if © = a|(;4;)/2) then location := [(i + j)/2]
else location := 0
return location {the subscript of the term equal to (0 if not found) }

30. The following algorithm will find all modes in the sequence and put them into a list L. At each point in
the execution of this algorithm, modecount is the number of occurrences of the elements found to occur most
often so far (the elements in L). Whenever a more frequently occurring element is found (the main inner
loop), modecount and L are updated; whenever an element is found with this same count, it is added to L.

procedure find all modes(ay,as,...,a, : nondecreasing integers)
modecount := 0
i:=1
while 1 <n
value 1= a;
count :=1
while ¢ <n and a; = value
count := count + 1
1:=1+1
if count > modecount then
modecount := count
set L to consist just of wvalue
else if count = modecount then add value to L
return L {the list of all the values occurring most often, namely modecount times }

32. The following algorithm will find all terms of a finite sequence of integers that are greater than the sum of all
the previous terms. We put them into a list L, but one could just as easily have them printed out, if that were
desired. It might be more useful to put the indices of these terms into L, rather than the terms themselves
(i.e., their values), but we take the former approach for variety. As usual, the empty list is considered to have

sum 0, so the first term in the sequence is included in L if and only if it positive.

procedure find all biggies(ay,as,...,a, : integers)
set L to be the empty list
sum =0
1:=1
while 1 <n
if a; > sum then append a; to L
sum = sum + a;
1:=1+1
return L {the list of all the values that exceed the sum of all the previous terms in the sequence }
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There are five passes through the list. After one pass the list reads 2,3,1,5,4,6, since the 6 is compared and
moved at each stage. During the next pass, the 2 and the 3 are not interchanged, but the 3 and the 1 are,
as are the 5 and the 4, yielding 2,1,3,4,5,6. On the third pass, the 2 and the 1 are interchanged, yielding
1,2,3,4,5,6. There are two more passes, but no further interchanges are made, since the list is now in order.

The procedure is the same as that given in the solution to Exercise 35. We will exhibit the lists obtained after
each step, with all the lists obtained during one pass on the same line.

dfkmab, dfkmab, dfkmab, dfkamb, dfkabm

df kabm , dfkabm, dfakbm, dfabkm

dfabkm, dafbkm, dabfkm

adbfkm, abdfkm

abdf km

We start with 6,2,3,1,5,4. The first step inserts 2 correctly into the sorted list 6, producing 2,6,3,1,5,4.
Next 3 is inserted into 2,6, and the list reads 2,3,6,1,5,4. Next 1 is inserted into 2, 3,6, and the list reads
1,2,3,6,5,4. Next 5 is inserted into 1,2,3,6, and the list reads 1,2,3,5,6,4. Finally 4 is inserted into
1,2,3,5,6, and the list reads 1,2,3,4,5,6. At each insertion, the element to be inserted is compared with the
elements already sorted, starting from the beginning, until its correct spot is found, and then the previously
sorted elements beyond that spot are each moved one position toward the back of the list.

We start with d, f, k,m,a,b. The first step inserts f correctly into the sorted list d, producing no change.
Similarly, no change results when k and m are inserted into the sorted lists d, f and d, f, k, respectively. Next
a is inserted into d, f, k,m, and the list reads a,d, f, k,m,b. Finally b is inserted into a,d, f,k, m, and the
list reads a,b,d, f, k,m. At each insertion, the element to be inserted is compared with the elements already
sorted, starting from the beginning, until its correct spot is found, and then the previously sorted elements
beyond that spot are each moved one position toward the back of the list.

We let minspot be the place at which the minimum remaining element is found. After we find it on the i*®
pass, we just have to interchange the elements in location minspot and location 1.
procedure selection(ay,az, ..., ay)
fori:=1ton—1
minspot :=1
for j:=i+1ton
if a; < aminspor then minspot := j
interchange Gminspot and a;
{the list is now in order }

We carry out the binary search algorithm given as Algorithm 3 in this section, except that we replace the final
check with if z < a; then location := i else location := 17 + 1.

We are counting just the comparisons of the numbers in the list, not any comparisons needed for the book-
keeping in the for loop. The second element in the list must be compared only with the first (in other words,
when j = 2 in Algorithm 5, 7 takes the values 1 before we drop out of the while loop). Similarly, the third
element must be compared only with the first. We continue in this way, until finally the n*" element must be
compared only with the first. So the total number of comparisons is n — 1. This is the best case for insertion
sort in terms of the number of comparisons, but moving the elements to do the insertions requires much more
effort.
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For the insertion sort, one comparison is needed to find the correct location of the 4, one for the 3, four for
the 8, one for the 1, four for the 5, and two for the 2. This is a total of 13 comparisons. For the binary
insertion sort, one comparison is needed to find the correct location of the 4, two for the 3, two for the 8,
three for the 1, three for the 5, and four for the 2. This is a total of 15 comparisons. If the list were long (and
not almost in decreasing order to begin with), we would use many fewer comparisons using binary insertion
sort. The reason that the answer came out “wrong” here is that the list is so short that the binary search was
not efficient.

a) This is essentially the same as Algorithm 5, but working from the other end. However, we can do the
moving while we do the searching for the correct insertion spot, so the pseudocode has only one section.

procedure backward insertion sort(ay,as,...,a, : real numbers with n > 2)
for j:=2ton
m:=q;
ti=7—1
while (m < a; and i > 0)
Git1 1= 0y
1:=1—1
A1 =M
{ai,as,...,a, are sorted}

b) On the first pass the 2 is compared to the 3 and found to be less, so the 3 moves to the right. We have
reached the beginning of the list, so the loop terminates (i = 0), and the 2 is inserted, yielding 2,3,4,5,1,6.
On the second pass the 4 is compared to the 3, and since 4 > 3, the while loop terminates and nothing
changes. Similarly, no changes are made as the 5 is inserted. One the fourth pass, the 1 is compared all the
way to the front of the list, with each element moving toward the back of the list as the comparisons go on,
and finally the 1 is inserted in its correct position, yielding 1,2,3,4,5,6. The final pass produces no change.
¢) Only one comparison is used during each pass, since the condition m < a; is immediately false. Therefore
a total of n — 1 comparisons are used.

d) The ;% pass requires j — 1 comparisons of elements, so the total number of comparisons is 1 +2 4 --- +
(n—1)=n(n-1)/2.

In each case we use as many quarters as we can, then as many dimes to achieve the remaining amount, then
as many nickels, then as many pennies.

a) The algorithm uses the maximum number of quarters, three, leaving 12 cents. It then uses the maximum
number of dimes (one) and nickels (none), before using two pennies.

b) one quarter, leaving 24 cents, then two dimes, leaving 4 cents, then four pennies

c¢) three quarters, leaving 24 cents, then two dimes, leaving 4 cents, then four pennies

d) one quarter, leaving 8 cents, then one nickel and three pennies

a) The algorithm uses the maximum number of quarters, three, leaving 12 cents. It then uses the maximum
number of dimes (one), and then two pennies. The greedy algorithm worked, since we got the same answer
as in Exercise 52.

b) one quarter, leaving 24 cents, then two dimes, leaving 4 cents, then four pennies (the greedy algorithm
worked, since we got the same answer as in Exercise 52)

c) three quarters, leaving 24 cents, then two dimes, leaving 4 cents, then four pennies (the greedy algorithm
worked, since we got the same answer as in Exercise 52)

d) The greedy algorithm would have us use one quarter, leaving 8 cents, then eight pennies, a total of nine
coins. However, we could have used three dimes and three pennies, a total of six coins. Thus the greedy
algorithm is not correct for this set of coins.
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One approach is to come up with an example in which using the 12-cent coin before using dimes or nickels
would be inefficient. A dime and a nickel together are worth 15 cents, but the greedy algorithm would have us
use four coins (a 12-cent coin and three pennies) rather than two. An alternative example would be 29 cents,
in which case the greedy algorithm would use a quarter and four pennies, but we could have done better using
two 12-cent coins and a nickel.

Here is one counterexample, using 11 talks. Suppose the start and end times are as follows: A 1-3, B 3-5, C
57, D79, E2-4,F 24, G 2-4, H 4-6, J 6-8, K 6-8, L. 6-8. The optimal schedule is talks A, B, C, and D.
However, the talk with the fewest overlaps with other talks is H, which overlaps only with B and C (all the
other talks overlap with three or four other talks). However, once we have decided to include talk H, we can
no longer schedule four talks, so this algorithm will not produce an optimum solution.

If all the men get their first choices, then the matching will be stable, because no man will be part of an
unstable pair, preferring another woman to his assigned partner. Thus the pairing (mjws, mowy, maws)
is stable. Similarly, if all the women get their first choices, then the matching will be stable, because no
woman will be part of an unstable pair, preferring another man to her assigned partner. Thus the matching
(mywr, maws, maws) is stable. Two of the other four matchings pair m; with w2, and this cannot be stable,
because mj prefers wy to wsy, his assigned partner, and w; prefers m, to her assigned partner, whoever
it is, because m; is her favorite. In a similar way, the matching (mjws, mows, mgw) is unstable because
of the unhappy unmatched pair msws (each preferring the other to his or her assigned partner). Finally,
the matching (mjw;, mows, mgws) is stable, because each couple has a reason not to break up: w; got her
favorite and so is content, mg got his favorite and so is content, and ws only prefers ms to her assigned
partner but he doesn’t prefer her to his assigned partner.

The algorithm given in the solution to Exercise 61 will terminate if at some point at the conclusion of the
while loop, no man is rejected. If this happens, then that must mean that each man has one and only one
proposal pending with some woman, because he proposed to only one in that round, and since he was not
rejected, his proposal is the only one pending with that woman. It follows that at that point there are s
pending proposals, one from each man, so each woman will be matched with a unique man. Finally, we argue
that there are at most s? iterations of the while loop, so the algorithm must terminate. Indeed, if at the
conclusion of the while loop rejected men remain, then some man must have been rejected, because no man
is marked as rejected at the conclusion of the proposal phase (first for loop inside the while loop). If a man
is rejected, then his rejection list grows. Thus each pass through the while loop, at least one more of the
52 possible rejections will have been recorded, unless the loop is about to terminate. (Actually there will be
fewer than s? iterations, because no man is rejected by the woman with whom he is eventually matched.)
There is one more subtlety we need to address. Is it possible that at the end of some round, some man has
been rejected by every woman and therefore the algorithm cannot continue? We claim not. If at the end of
some round some man has been rejected by every woman, then every woman has one pending proposal at
the completion of that round (from someone she likes better—otherwise she never would have rejected that
poor man), and of course these proposals are all from different men because a man proposes only once in each
round. That means s men have pending proposals, so in fact our poor universally-rejected man does not exist.

Suppose we had a program S that could tell whether a program with its given input ever prints the digit 1.
Here is an algorithm for solving the halting problem: Given a program P and its input I, construct a program
P’ which is just like P but never prints anything (even if P did print something) except that if and when it
is about to halt, it prints a 1 and halts. Then P halts on an input if and only if P’ ever prints a 1 on that
same input. Feed P’ and I to S, and that will tell us whether or not P halts on input I. Since we know
that the halting problem is in fact not solvable, we have a contradiction. Therefore no such program S exists.
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The decision problem has no input. The answer is either always yes or always no, depending on whether or
not the specific program with its specific input halts or not. In the former case, the decision procedure is “say

”

yes,” and in the latter case it is “say no.”

SECTION 3.2 The Growth of Functions

2.

10.

12.

Note that the choices of C' and k witnesses are not unique.

a) Yes, since 172 + 11 < 17z + 2 = 18z < 1822 for all x > 11. The witnesses are C' =18 and k = 11.

b) Yes, since 22 + 1000 < x? 4 22 = 222 for all > v/1000. The witnesses are C' =2 and k = 1/1000.

c) Yes, since zlogzx < z-x = z2 for all z in the domain of the function. (The fact that logz < z for all x
follows from the fact that x < 2% for all =, which can be seen by looking at the graphs of these two functions.)
The witnesses are C'=1 and k = 0.

d) No. If there were a constant C such that z*/2 < Cz? for sufficiently large z, then we would have
C > x%/2. This is clearly impossible for a constant to satisfy.

e) No. If 2% were O(z?), then the fraction 2%/2% would have to be bounded above by some constant C'.
It can be shown that in fact 2% > z3 for all z > 10 (using mathematical induction—see Section 5.1—or
calculus), so 2%/2% > 23 /x? = x for large x, which is certainly not less than or equal to C.

f) Yes, since |z|[z] < z(z +1) <z -2z =22% for all z > 1. The witnesses are C =2 and k = 1.

. If x> 5, then 27 +17 < 2% +2% = 2.2% <2.3%. This shows that 2% + 17 is O(3%) (the witnesses are C' = 2

and k=5).

. We can use the following inequalities, valid for all > 1 (note that making the denominator of a fraction

smaller makes the fraction larger).
z3 + 2z < x3 + 223 _ §x2
20 +1 2z 2
This proves the desired statement, with witnesses kK =1 and C' = 3/2.

. a) Since 2®logz is not O(z3) (because the logz factor grows without bound as z increases), n = 3 is too

small. On the other hand, certainly logx grows more slowly than z, so 2z? 4+ z3logz < 2z* 4+ z* = 3z%.

Therefore n = 4 is the answer, with C' =3 and k£ =0.

b) The (logz)? is insignificant compared to the 2° term, so the answer is n = 5. Formally we can take C' = 4
and k£ =1 as witnesses.

c¢) For large x, this fraction is fairly close to 1. (This can be seen by dividing numerator and denominator
by x%.) Therefore we can take n = 0; in other words, this function is O(2%) = O(1). Note that n = —1 will
not do, since a number close to 1 is not less than a constant times n~! for large n. Formally we can write
f(x) < 32%/2* =3 for all x > 1, so witnesses are C' =3 and k = 1.

d) This is similar to the previous part, but this time n = —1 will do, since for large z, f(z) = 1/z. Formally
we can write f(x) < 6x3/x3 =6 for all x > 1, so witnesses are C' =6 and k = 1.

Since 2® < * for all x > 1, we know that 23 is O(2*) (witnesses C = 1 and k = 1). On the other hand,
if z* < C2?, then (dividing by 2®) 2 < C. Since this latter condition cannot hold for all large z, no matter
what the value of the constant C', we conclude that z* is not O(z?3).

We showed that xlogx is O(z?) in Exercise 2c. To show that 22 is not O(zlogx) it is enough to show that
2?/(xlogz) is unbounded. This is the same as showing that z/logx is unbounded. First let us note that
logx < y/x for all > 16. This can be seen by looking at the graphs of these functions, or by calculus.
Therefore the fraction x/logx is greater than x/\/x = y/x for all > 16, and this clearly is not bounded.
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a) No, by an argument similar to Exercise 10.

b) Yes, since 23 < 23 for all  (witnesses C' =1, k =0).

c) Yes, since 22 < 22 + 23 for all x (witnesses C =1, k =0).

d) Yes, since 2% < 2?2 + z* for all = (witnesses C =1, k= 0).

e) Yes, since 23 < 2% < 3% for all z > 10 (see Exercise 2¢). Thus we have witnesses C' =1 and k = 10.
f) Yes, since 23 < 2- (23/2) for all = (witnesses C' =2, k= 0).

The given information says that |f(z)| < C|z| for all > k, where C' and k are particular constants. Let
k' be the larger of k and 1. Then since |z| < |2?| for all z > 1, we have |f(z)| < C|z?| for all x > k', as
desired.

They both are. For the first we have log(n + 1) < log(2n) = logn + log2 < 2logn for n > 2. For the second
one we have log(n? + 1) < log(2n?) = 2logn + log2 < 3logn for n > 2.

The ordering is straightforward when we remember that exponential functions grow faster than polynomial
functions, that factorial functions grow faster still, and that logarithmic functions grow very slowly. The order
is (logn)3, /nlogn, n% +n%, ni% 157 107, (n!)2.

The first algorithm uses fewer operations because n?2" is O(n!) but n! is not O(n?2"). In fact, the second
function overtakes the first function for good at n = 8, when 8% - 28 = 16,384 and 8! = 40,320.

The approach in these problems is to pick out the most rapidly growing term in each sum and discard the rest
(including the multiplicative constants).

a) This is O(n? - logn + logn - n?), which is the same as O(n? - logn).

b) Since 2" dominates n?, and 3" dominates n?, this is O(2" - 3") = O(6").

¢) The dominant terms in the two factors are n™ and n!, respectively. Therefore this is O(n™n!).

We can use the following rule of thumb to determine what simple big-Theta function to use: throw away all
the lower order terms (those that don’t grow as fast as other terms) and all constant coefficients.

a) This function is ©(1), so it is not ©(x), since 1 (or 10) grows more slowly than x. To be precise, z is
not O(10). For the same reason, this function is not Q(z).

b) This function is O(z); we can ignore the “ + 7”7 since it is a lower order term, and we can ignore the
coefficient. Of course, since f(x) is O(z), it is also Q(z).

c¢) This function grows faster than . Therefore f(x) is not ©(x) but it is Q(x).

d) This function grows more slowly than . Therefore f(x) is not ©(z) or Q(z).

e) This function has values that are, for all practical purposes, equal to = (certainly |z] is always between
x/2 and z, for x > 2), so it is ©(x) and therefore also Q(z).

f) As in part (e) this function has values that are, for all practical purposes, equal to /2, so it is ©(x) and
therefore also Q(z).

a) This follows from the fact that for all © > 7, ¢ <3z 47 < 4z.

b) For large x, clearly 2% < 222 + £ — 7. On the other hand, for z > 1 we have 222 + 2 — 7 < 322.

c) For z > 2 we certainly have |z + 3| <2z and also z < 2|z + 1].

d) For z > 2, log(z? +1) < log(22?) = 1 +2logz < 3logx (recall that log means log, ). On the other hand,
since x < 22 + 1 for all positive z, we have logx < log(z? + 1).

e) This follows from the fact that log,,x = C'(logy x), where C' = 1/log, 10.
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We just need to look at the definitions. To say that f(z) is O(g(z)) means that there are constants C' and
k such that |f(z)| < C|g(z)| for all > k. Note that without loss of generality we may take C' and k to
be positive. To say that g(x) is Q(f(x)) is to say that there are positive constants C’ and k’ such that
lg(z)| > C’|f(2)| for all > k. These are saying exactly the same thing if we set ¢’ =1/C and k¥ = k.

a) By Exercise 31 we have to show that 3z% +z +1 is O(32?) and that 322 is O(3z% + x + 1). The latter is
trivial, since 3z < 3z2+xz+1 for £ > 0. The former is almost as trivial, since 3z24+z+1 < 322 +322 = 2-322
for all © > 1. What we have shown is that 1-322 < 322 +24+1 < 2322 for all £ > 1; in other words, C; = 1
and C3 = 2 in Exercise 33.

b) The following picture shows that graph of 322 +x + 1 falls in the shaded region between the graph of 32
and the graph of 2-3z2 for all z > 1.

25 2-3x2
20
15 B 24w+

3x2

Looking at the definition, we see that to say that f(x) is ©(1) means that |f(z)| > C when x > k, for some
positive constants k and C. In other words, f(x) keeps at least a certain distance away from 0 for large
enough z. For example, 1/z is not (1), since it gets arbitrary close to 0; but (x —2)(x — 10) is (1), since
f(z) > 9 for x> 11.

The n'* odd positive integer is 2n — 1. Thus each of the first n odd positive integers is at most 2n. Therefore
their product is at most (2n)™, so one answer is O((2n)"). Of course other answers are possible as well.

This follows from the fact that log, x and log, x are the same except for a multiplicative constant, namely
d =logya. Thus if f(z) < Clog, z, then f(z) < Cdlog,

This does not follow. Let f(x) = 2z and g(z) = x. Then f(x) is O(g(x)). Now 2f(®) = 222 — 47 and
29(®) — 27 "and 4% is not O(2%). Indeed, 4%/2% = 2%, so the ratio grows without bound as x grows—it is

not bounded by a constant.

The definition of “f(x) is ©(g(x))” is that f(x) is both O(g(x)) and Q(g(x)). That means that there are
positive constants C, k1, Ca, and ko such that |f(z)] < Ca|g(x)] for all > kg and |f(x)| > Ci|g(x)] for all
x > ky. Similarly, we have that there are positive constants C], k}, C%, and kb such that |g(x)| < Chlh(x)]
for all & > Kk} and |g(x)| > Ci|h(z)| for all > ki. We can combine these inequalities to obtain |f(z)| <
C2Chlh(z)| for all > max(ke, k) and |f(z)| > C1C1|h(z)| for all x > max(ki, k]). This means that f(z)

is O(h(x)).

The definitions tell us that there are positive constants C7, k1, Co, and ko such that |fi(z)| < Cslg:1(x)| for
all © > ko and |fi(x)] > Ci|g1(z)| for all © > ki, and that there are positive constants C}, ki, C4, and
k} such that |fa(x)] < Chlge(z)| for all z > kb and |f2( )| > Cllg2(z)| for all z > kj. We can multiply
these inequalities to obtain |fi(x)f2(z)| < CoChlg1(x)ge(x)| for all & > max(ks, kb)) and |fi(z)f2(x)| >
C1C1lg1(x)g2(x)| for all x > max(ki,k]). This means that fi(x)f2(z) is O(g1(x)g2(x)).
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Typically C will be less than 1. From some point onward to the right (z > k), the graph of f(z) must be
above the graph of g(z) after the latter has been scaled down by the factor C'. Note that f(x) does not have
to be larger than g(z) itself.

gix)
f(x)
Cgix)
1

—

We need to show inequalities both ways. First, we show that |f(z)| < Cz™ for all x > 1, as follows, noting
that a* < z™ for such values of x whenever i < n. We have the following inequalities, where M is the largest
of the absolute values of the coefficients and C' is M (n + 1):
|f(2)] = |an®™ + an_12™ " + - + a1z + ag
<lanlz” +an_1|z" "+ +as |z + |aol
<lan|z" + |an—1]z™ + - + |a1|z™ + |ao|z™

< Mxz"+Mz"+-- -+ Mz" + Mz" =Cz"

For the other direction, which is a little messier, let k be chosen larger than 1 and larger than 2nm/|a,|,
where m is the largest of the absolute values of the a;’s for i < n. Then each a,_;/x" will be smaller than
|an|/2n in absolute value for all © > k. Now we have for all = > k,

If(2)] = |ana™ + ap_12™ ' 4+ a12 + ag|
an—1 ai

Qg

n

=z |an + n—1 + on
x T

> 2" lan /2],

as desired.

We just make the analogous change in the definition of big-Omega that was made in the definition of big-O:
there exist positive constants C', k1, and ko such that |f(x,y)| > C|g(x,y)| for all z > k; and y > ks.

For all values of x and y greater than 1, each term of the given expression is greater than z3y%, so the
entire expression is greater than z3y®. In other words, we take C' = k; = ky = 1 in the definition given in
Exercise 52.

For all positive values of x and y, we know that [zy] > zy by definition (since the ceiling function value
cannot be less than the argument). Thus [zy] is Q(zy) from the definition, taking C' =1 and k; = ko = 0. In
fact, [zy] is also O(zy) (and therefore ©(zy)); this is easy to see since [zy] < (z+1)(y+1) < (22)(2y) = 4zy
for all x and y greater than 1.

It suffices to show that ) .
lim (Ogbdn)
n—oo n

where we think of n as a continuous variable. Because both numerator and denominator approach oo, we

:07

apply L'Hopital’s rule and evaluate
. c(log,n)"!
lim ———2—~— .
oo d-nd-Inb
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At this point, if ¢ < 1, then the limit is 0. Otherwise we again have an expression of type co/co, so we apply
L’Hopital’s rule once more, obtaining
c(c—1)(1 c=2
L ele—1)(log, n)
n—oo  d?-n?- (Inb)?

If ¢ < 2, then the limit is 0; if not, we repeat. Eventually the exponent on log, n becomes nonpositive and

we conclude that the limit is 0, as desired.

If suffices to look at lim, . b"/c™ = (b/c)" and lim, . ¢ /0" = (¢/b)™. Because ¢ > b > 1, we have

0<b/c< 1 and ¢/b> 1, so the former limit is clearly 0 and the latter limit is clearly oo.

a) Under the hypotheses,
lim cf (@) =c lim @ =c-0=0.
e—oo g(x)  w—oo g(x)

b) Under the hypotheses,

lim — lim fi(z) + L fa(2)

=04+0=0.
xT—00 g(gj) xr—00 g(x) T—00 g(x) +

The behaviors of f and ¢ alone are not really at issue; what is important is whether f(z)/g(x) approaches 0
as ¢ — 0o. Thus, as shown in the picture, it might happen that the graphs of f and g rise, but f increases
enough more rapidly than g so that the ratio gets small. In the picture, we see that f(x)/g(x) is asymptotic
to the z-axis.

f(x)

gix)

S

fi{x)/g(x)

No. Let f(x) = x and g(z) = 22. Then clearly f(z) is o(g(z)), but the ratio of the logs of the absolute values
is the constant 2, and 2 does not approach 0. Therefore it is not the case in this example that log|f(x)| is

o(log |g(x)]).

This follows from the fact that the limit of f(z)/g(x) is 0 in this case, as can be most easily seen by dividing
numerator and denominator by z™ (the numerator then is bounded and the absolute value of the denominator
grows without bound as z — o).

Since f(x) = 1/x is a decreasing function which has the value 1/x at = = j, it is clear that 1/j < 1/x
throughout the interval from j — 1 to j. Summing over all the intervals for j = 2,3,...,n, and noting that
the definite integral is the area under the curve, we obtain the inequality in the hint. Therefore

n

1

1 1

anl—i—g —_<1—|—/ —dr=14Inn=1+Clogn < 2Clogn
— j x
Jj=2

for n > 2, where C' = loge.



78

72.

74.

Chapter 3 Algorithms

By Example 6, logn! is O(nlogn). By Exercise 71, nlogn is O(logn!). Thus by Exercise 31, logn! is
O(nlogn).

In each case we need to evaluate the limit of f(x)/g(z) as * — oco. If it equals 1, then f and g are asymptotic;
otherwise (including the case in which the limit does not exist) they are not. Most of these are straightforward
applications of algebra, elementary notions about limits, or L’Hopital’s rule.

243z +7 143 7/x?
21 1 1
b) 1 ? (;gx = lim 2% = lim ma = 0 (we used L'Hopital’s rule for the last equivalence), so f and
T—00 x r—00 I r—oo I - I

g are not asymptotic.

c) Here f(x) is dominated by its leading term, z*, and g(z) is a polynomial of degree 4, so the ratio
approaches 1, the ratio of the leading coefficients, as in part (a). Therefore f and g are asymptotic.

d) Here f and g are polynomials of degree 12, so the ratio approaches 1, the ratio of the leading coefficients,
as in part (a). Therefore f and g are asymptotic.

SECTION 3.3 Complexity of Algorithms

2.

10.

. . k
. If we successively square k times, then we have computed z? . Thus we can compute x

The statement ¢ :=t +1i + j is executed n? times, so the number of operations is O(n?). (Specifically, 2n?
additions are used, not counting any arithmetic needed for bookkeeping in the loops.)

The value of i keeps doubling, so the loop terminates after k iterations as soon as 2¥ > n. The value of k that
makes this happen is O(logn), because 2!°6™ = n. Within the loop there are two additions or multiplications,
so the answer to the question is O(logn).

. a) We can sort the first four elements by copying the steps in Algorithm 5 but only up to j =4.

procedure sort four(ay,as,...,a, : real numbers)
for j:=2to 4
=1
while a; > a;
1:=1+1
m = aj

for k:=0toj—i—1
Ak = Qg1
a;:=m
b) Only a (small) finite number of steps are performed here, regardless of the length of the list, so this
algorithm has complexity O(1).
2" with only k
multiplications, rather than the 2¥ — 1 multiplications that the naive algorithm would require, so this method

is much more efficient.

a) By the way that S — 1 is defined, it is clear that S A (S — 1) is the same as S except that the rightmost
1 bit has been changed to a 0. Thus we add 1 to count for every one bit (since we stop as soon as S = 0,
i.e., as soon as S consists of just 0 bits).

b) Obviously the number of bitwise AND operations is equal to the final value of count, i.e., the number of
one bits in S.
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14.
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20.

a) There are three loops, each nested inside the next. The outer loop is executed n times, the middle loop
is executed at most n times, and the inner loop is executed at most n times. Therefore the number of times
the one statement inside the inner loop is executed is at most n?. This statement requires one comparison,
so the total number of comparisons is O(n?).

b) We follow the hint, not worrying about the fractions that might result from roundoff when dividing by 2
or 4 (these don’t affect the final answer in big-Omega terms). The outer loop is executed at least n/4 times,
once for each value of i from 1 to n/4 (we ignore the rest of the values of 7). The middle loop is executed
at least n/4 times, once for each value of j from 3n/4 to n. The inner loop for these values of i and j is
executed at least (3n/4) — (n/4) = n/2 times. Therefore the statement within the inner loop, which requires
one comparison, is executed at least (n/4)(n/4)(n/2) = n/32 times, which is Q(n3). The second statement
follows by definition.

a) Initially y :=3. For i =1 weset y to 3-2+1=7. For i =2 we set y to 7-2+1 =15, and we are done.
b) There is one multiplication and one addition for each of the n passes through the loop, so there are n
multiplications and n additions in all.

If each bit operation takes 10~!! second, then we can carry out 10! bit operations per second, and therefore
60 - 60 - 24 - 10'! = 864 - 10'3 bit operations per day. Therefore in each case we want to solve the inequality
f(n) = 864-10' for n and round down to an integer. Obviously a calculator or computer software will come
in handy here.

a) If logn = 864 - 10'3 then n = 286410" \which is an unfathomably huge number.

b) If 1000n = 864 - 1013, then n = 864 - 10'°, which is still a very large number.

c) If n? =864 -10'3, then n = \/m7 which works out to about 9.3 -107.

d) If 1000n% = 864 - 10'3, then n = v/864 - 1019, which works out to about 2.9 - 106,

e) If n® =864 -10'3, then n = (864 - 10*3)!/3 which works out to about 2.1 -10°.

f) If 2" = 864 - 102, then n = |log(864 - 10'3)] = 52. (Remember, we are taking log to the base 2.)

g) If 22" =864 - 10'3, then n = |log(864 - 10'3)/2] = 26.

h) If 22" =864 -10', then n = [log(log(864 - 10'3))| = 5.

We are asked to compute (2n? +27) 1079 for each of these values of n. When appropriate, we change the
units from seconds to some larger unit of time.

a) 1.224 x 1075 seconds b) approximately 1.05 x 1073 seconds

c) approximately 1.13 x 10° seconds, which is about 13 days (nonstop)

d) approximately 1.27 x 102! seconds, which is about 4 x 10'3 years (nonstop)

In each case we want to compare the function evaluated at 2n to the function evaluated at n. The most
desirable form of the comparison (subtraction or division) will vary.

a) Notice that

loglog 2n — loglogn = log log2 +logn =lo 1+logn .

logn logn

If n is large, the fraction in this expression is approximately equal to 1, and therefore the expression is
approximately equal to 0. In other words, hardly any extra time is required. For example, in going from
n = 1024 to n = 2048, the number of extra milliseconds is log 11/10 ~ 0.14.
b) Here we have log 2n — logn = log 27" =log2 = 1. One extra millisecond is required, independent of n.
c¢) This time it makes more sense to use a ratio comparison, rather than a difference comparison. Because
100(2n)/(100n) = 2, we conclude that twice as much time is needed for the larger problem.
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d) The controlling factor here is n, rather than logn, so again we look at the ratio:
2nlog(2n) 5 1+1logn

nlogn logn
For large n, the final fraction is approximately 1, so we can say that the time required for 2n is a bit more
than twice what it is for n.
e) Because (2n)?/n? = 4, we see that four times as much time is required for the larger problem.
f) Because (3n)?/n? =9, we see that nine times as much time is required for the larger problem.
g) The relevant ratio is 22 /2", which equals 2". If n is large, then this is a huge number. For example, in
going from n = 10 to n = 20, the number of milliseconds increases over 1000-fold.

a) The number of comparisons does not depend on the values of a; through a, . Exactly 2n —1 comparisons
are used, as was determined in Example 1. In other words, the best case performance is O(n).

b) In the best case x = a;. We saw in Example 4 that three comparisons are used in that case. The best
case performance, then, is O(1).

c¢) It is hard to give an exact answer, since it depends on the binary representation of the number n, among
other things. In any case, the best case performance is really not much different from the worst case perfor-
mance, namely O(logn), since the list is essentially cut in half at each iteration, and the algorithm does not
stop until the list has only one element left in it.

a) In order to find the maximum element of a list of n elements, we need to make at least n —1 comparisons,
one to rule out each of the other elements. Since Algorithm 1 in Section 3.1 used just this number (not
counting bookkeeping), it is optimal.

b) Linear search is not optimal, since we found that binary search was more efficient. This assumes that we
can be given the list already sorted into increasing order.

We will count comparisons of elements in the list to x. (This ignores comparisons of subscripts, but since we
are only interested in a big-O analysis, no harm is done.) Furthermore, we will assume that the number of
elements in the list is a power of 4, say n = 4. Just as in the case of binary search, we need to determine
the maximum number of times the while loop is iterated. Each pass through the loop cuts the number of
elements still being considered (those whose subscripts are from i to j) by a factor of 4. Therefore after k
iterations, the active portion of the list will have length 1; that is, we will have ¢ = j. The loop terminates at
this point. Now each iteration of the loop requires two comparisons in the worst case (one with a,, and one
with either a; or a, ). Three more comparisons are needed at the end. Therefore the number of comparisons
is 2k + 3, which is O(k). But k = log, n, which is O(logn) since logarithms to different bases differ only
by multiplicative constants, so the time complexity of this algorithm (in all cases, not just the worst case) is
O(logn).

The algorithm we gave for finding all the modes essentially just goes through the list once, doing a little
bookkeeping at each step. In particular, between any two successive executions of the statement ¢ := ¢ + 1
there are at most about eight operations (such as comparing count with modecount, or reinitializing value).
Therefore at most about 8n steps are done in all, so the time complexity in all cases is O(n).

The algorithm we gave is clearly of linear time complexity, i.e., O(n), since we were able to keep updating
the sum of previous terms, rather than recomputing it each time. This applies in all cases, not just the worst

case.

The algorithm read through the list once and did a bounded amount of work on each term. Looked at another
way, only a bounded amount of work was done between increments of j in the algorithm given in the solution.
Thus the complexity is O(n).
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It takes n—1 comparisons to find the least element in the list, then n—2 comparisons to find the least element
among the remaining elements, and so on. Thus the total number of comparisons is (n—1)4+(n—2)+---+2+1 =
n(n — 1)/2, which is O(n?).

Each iteration (determining whether we can use a coin of a given denomination) takes a bounded amount
of time, and there are at most n iterations, since each iteration decreases the number of cents remaining.
Therefore there are O(n) comparisons.

First we sort the talks by earliest end time; this takes O(nlogn) time if there are n talks. We initialize a
variable opentime to be 0; it will be updated whenever we schedule another talk to be the time at which
that talk ends. Next we go through the list of talks in order, and for each talk we see whether its start time
does not precede opentime (we already know that its ending time exceeds opentime). If so, then we schedule
that talk and update opentime to be its ending time. This all takes O(1) time per talk, so the entire process
after the initial sort has time complexity O(n). Combining this with the initial sort, we get an overall time
complexity of O(nlogn).

a) The bubble sort algorithm uses about n?/2 comparisons for a list of length n, and (2n)?/2 = 2n?
comparisons for a list of length 2n. Therefore the number of comparisons goes up by a factor of 4.

b) The analysis is the same as for bubble sort.

c¢) The analysis is the same as for bubble sort.

d) The binary insertion sort algorithm uses about Cnlogn comparisons for a list of length n, where C' is a
constant. Therefore it uses about C'-2nlog2n = C -2nlog2+ C-2nlogn = C-2n+ C - 2nlogn comparisons
for a list of length 2n. Therefore the number of comparisons increases by about a factor of 2 (for large n,
the first term is small compared to the second and can be ignored).

In an n xn upper-triangular matrix, all entries a;; are zero unless i < j. Therefore we can store such matrices
in about half the space that would be required to store an ordinary n x n matrix. In implementing something
like Algorithm 1, then, we need only do the computations for those values of the indices that can produce
nonzero entries. The following algorithm does this. We follow the usual notation: A = [a;;] and B = [b;].
procedure triangular matriz multiplication(A, B : upper-triangular matrices)
fori:=1ton
for j:=ito n {since we want j >i}
Cij = 0
for k :=i to j {the only relevant part }
Cij = Cij + Qikby;
{the upper-triangular matrix C = [¢;;] is the product of A and B}

We have two choices: (AB)C or A(BC). For the first choice, it takes 3 -9 -4 = 144 multiplications to
form the 3 x 4 matrix AB, and then 3 -4 -2 = 24 multiplications to get the final answer, for a total of 168
multiplications. For the second choice, it takes 9 -4 -2 = 72 multiplications to form the 9 x 2 matrix BC,
and then 3 -9 -2 = 54 multiplications to get the final answer, for a total of 126 multiplications. The second
method uses fewer multiplications and so is the better choice.

a) Let us call the text s1s3...s, and call the target tits...t,,. We want to find the first occurrence
of tity...t,, in $183...8,, which means we want to find the smallest & > 0 such that tit5...t,, =
Sk4+1S5k+2 - - - Sk+m - LThe brute force algorithm will try £ =0,1,...,n —m and for each such k£ check whether
t; = sgy; for 7 =1,2,...,m. If these equalities all hold, the value k + 1 will be returned (that’s where the
target starts); otherwise 0 will be returned (as a code for “not there”).

b) The implementation is straightforward:
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procedure findit(s18z2 ... Sy, t1ta .. . Ly, : strings)
found := false
k=0
while k£ < m —n and not found
found := true
for j:=itom
if t; # sp4; then found := false

if found then return k + 1 {location of start of target t1ts...¢,, in text s1sq...

return 0 {target tits .. .t,, does not appear in text siss... sn}

¢) Because of the nested loops, the worst-case time complexity will be O(mn).

SUPPLEMENTARY EXERCISES FOR CHAPTER 3

Algorithms

Sn}

2. a) We need to keep track of the first and second largest elements as we go along, updating as we look at the

elements in the list.

procedure toptwo(ay,as,...,a, : integers)
largest 1= aq
second := —o0

for i:=2ton
if a; > second then second := a;
if a; > largest then
second := largest
largest := a;
{ largest and second are the required values}

b) The loop is executed n — 1 times, and there are 2 comparisons per iteration. Therefore (ignoring book-

keeping) there are 2n — 2 comparisons.

4. a) Since the list is in order, all the occurrences appear consecutively. Thus the output of our algorithm will

be a pair of numbers, first and last, which give the first location and the last location of occurrences of x,

respectively. All the numbers between first and last are also locations of appearances of x. If there are no

appearances of x, we set first equal to 0 to indicate this fact.

procedure all(z,aq,as,...,a, : integers, with a1 > as > -+ > ay)
1:=1
while i <n and a; < x

1:=1+4+1
if i=n+1 then first :=0
else if a; > = then first :==0
else

first :=1

1:=14+1

while : <n and a; =z

1:=1+1

last :==i—1

{see above for the interpretation of the variables }

b) The number of comparisons depends on the data. Roughly speaking, in the worst case we have to go all the

way through the list. This requires that = be compared with each of the elements, a total of n comparisons

(not including bookkeeping). The situation is really a bit more complicated than this, but in any case the

answer is O(n).



Supplementary Exercises 83

6.

10.

12.

a) We follow the instructions given. If n is odd then we start the loop at i = 2, and if n is even then we
start the loop at ¢+ = 3. Within the loop, we compare the next two elements to see which is larger and which
is smaller. The larger is possibly the new maximum, and the smaller is possibly the new minimum.

b) procedure clever smallest and largest(ay,as,. .., a, : integers)
if n is odd then
min = ai
mazr = a
else if a7 < ay then
min := aj
mazs = as
else
min = as
mazr == a,

if n is odd then i :=2 else i :=3
while i < n
if a; < a;y, then
smaller := a;
bigger := a;11
else
smaller == a;41
bigger := a;
if smaller < min then min := smaller
if bigger > maxr then maz := bigger
ti=14+2
{ min is the smallest integer among the input, and maz is the largest}
c¢) If n is even, then pairs of elements are compared (first with second, third with fourth, and so on), which
accounts for n/2 comparisons, and there are an additional 2((n/2) — 1) = n — 2 comparisons to determine
whether to update min and maz. This gives a total of (3n —4)/2 comparisons. If n is odd, then there are
(n —1)/2 pairs to compare and 2((n — 1)/2) =n — 1 comparisons for the updates, for a total of (3n — 3)/2.

Note that in either case, this total is [3n/2] — 2 (see Exercise 7).

The naive approach would be to keep track of the largest element found so far and the second largest element
found so far. Each new element is compared against the largest, and if it is smaller also compared against the
second largest, and the “best-so-far” values are updated if necessary. This would require about 2n comparisons
in all. We can do it more efficiently by taking Exercise 6 as a hint. If n is odd, set [ to be the first element
in the list, and set s to be —oo. If n is even, set [ to be the larger of the first two elements and s to be the
smaller. At each stage, [ will be the largest element seen so far, and s the second largest. Now consider the
remaining elements two by two. Compare them and set a to be the larger and b the smaller. Compare a with
l. If a > 1, then a will be the new largest element seen so far, and the second largest element will be either
l or b; compare them to find out which. If @ < [, then [ is still the largest element, and we can compare
a and s to determine the second largest. Thus it takes only three comparisons for every pair of elements,
rather than the four needed with the naive approach. The counting of comparisons is exactly the same as in
Exercise 6: [3n/2] — 2.

Following the hint, we first sort the list and call the resulting sorted list ai,as,...,a,. To find the last
occurrence of a closest pair, we initialize diff to oo and then for ¢ from 1 to n — 1 compute a;y; — a;. If
this value is less than diff , then we reset diff to be this value and set k£ to equal i. Upon completion of this
loop, ax and agy;1 are a closest pair of integers in the list. Clearly the time complexity is O(nlogn), the time
needed for the sorting, because the rest of the procedure takes time O(n).

We start with the solution to Exercise 37 in Section 3.1 and modify it to alternately examine the list from the
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front and from the back. The variables front and back will show what portion of the list still needs work.
(After the k' pass from front to back, we know that the final & elements are in their correct positions, and
after the k™ pass from back to front, we know that the first & elements are in their correct positions.) The
outer if statement takes care of changing directions each pass.

procedure shakersort(as,...,ay)
front :=1
back :=n

still _interchanging := true
while front < back and still_interchanging
if n + back + front is odd then {process from front to back }
still__interchanging := false
for j := front to back — 1
if a; > aj41 then
still_interchanging := true
interchange a; and a4
back := back — 1
else {process from back to front }
still__interchanging := false
for j := back down to front +1
if aj_1 > a; then
still _interchanging := true
interchange a;_; and a;
front := front + 1
{ai,...,a, is in nondecreasing order }

Lists that are already in close to the correct order will have few items out of place. One pass through the
shaker sort will then have a good chance of moving these items to their correct positions. If we are lucky,
significantly fewer than n — 1 passes through the list will be needed.

Since 823 + 12z + 100log z < 823 + 1223 + 1002® = 12023 for all = > 1, the conclusion follows by definition.

This is a sum of n things, each of which is no larger than 2n2. Therefore the sum is O(2n?), or more simply,
O(n3). This is the “best” possible answer.

Let us look at the ratio n™/n!. We can write this as
n n n

n n
n n-1n-2 2 1

Each factor is greater than or equal to 1, and the last factor is n. Therefore the ratio is greater than or equal
to n. In particular, it cannot be bounded above by a constant C'. Therefore the defining condition for n™

being O(n!) cannot be met.

By ignoring lower order terms, we see that the orders of these functions in simplest terms are 27, n2, 47, n!,
3", and n*, respectively. None of them is of the same order as any of the others.

We know that any power of a logarithmic functions grows more slowly than any power function (with power
greater than 0), so such a value of n must exist. Begin by squaring both sides, to give (log 71)21[Jl < n,
and then because of the logarithm, let n = 2¥. This gives us k2T < 2k, Taking logs of both sides gives
20l og k < k. Letting k = 2™ gives 20! .m < 2™. This is almost true when m = 101, but not quite; if we
let m = 108, however, then the inequality is satisfied, because 27 > 108. Thus our value of n is 22108, which
is very big! Notice that there was not much wiggle room in our analysis, so something significantly smaller
than this will not do.
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The first five of these functions grow very rapidly, whereas the last four grow fairly slowly, so we can analyze

each group separately. The value of n swamps the value of logn for large n, so among the last four, clearly

3/2 is the fastest growing and n*/3 (logn)? is next. The other two have a factor of n in common, so the

issue is comparing lognloglogn to (log n)3/ 2. because logs are much smaller than their argument, loglogn

n

is much smaller than logn, so the extra one-half power wins out. Therefore among these four, the desired
order is lognloglogn, (logn)3/?, n*/3(logn)?, n®?. We now turn to the large functions in the list and take
the logarithm of each in order to make comparison easier: 100n, n?, n!, 2" and (logn)?. These are easily
arranged in increasing big- O order, so our final answer is

log nloglogn, (10gn)3/2, n4/3(10gn)2, n3/2,  plesn = 9l00n 2"2, 22" ont,

The greedy algorithm in this case will produce the base ¢ expansion for the number of cents required (except
that for amounts greater than or equal to ¢**!, the ¢* coins must be used rather than nonexistent ¢! coins for
i > k). Since such expansions are unique if each digit (other than the digit in the ¢ place) is less than c, the
only other ways to make change would involve using ¢ or more coins of a given denomination, and this would

obviously not be minimal, since ¢ coins of denomination ¢* could be replaced by one coin of denomination
Gt

a) We follow the hint, first sorting the sequence into a,as, ..., a,. We can then loop for i :=1 to n—1 and
within that for j:=¢+ 1 to n and for each such pair (i,7) use binary search to determine whether a; — a;
is in the sorted sequence.

b) Recall that sorting can be done in O(nlogn) time and that binary searching can be done in O(logn) time.
Therefore the time inside the loops is O(n?logn), and the sorting adds nothing appreciable to this, so the
efficiency is O(n?logn). This is better than the brute-force algorithm, which clearly takes time Q(n?).

We will prove this essentially by induction on the round in which the woman rejects the man under consid-
eration. Suppose that the algorithm produces a matching that is not male optimal; in particular, suppose
that Joe is not assigned the valid partner highest on his preference list. The way the algorithm works, Joe
proposes first to his highest-ranked woman, say Rita. If she rejects him in the first round, it is because she
prefers another man, say Sam, who has Rita as his first choice. This means that any matching in which Joe
is married to Rita would not be stable, because Rita and Sam would each prefer each other to their spouses.
Next suppose that Rita leaves Joe’s proposal pending in the first round but rejects him in favor of Ken in
the second round. The reason that Ken proposed to Rita in the second round is that he was rejected in the
first round, which as we have seen means that there is no stable matching in which Ken is married to his first
choice. If Joe and Rita were to be married, then Rita and Ken would form an unstable pair. Therefore again
Rita is not a valid partner for Joe. We can continue with this argument through all the rounds and conclude
that Joe in fact got his highest choice among valid partners: Anyone who rejected him would have been part
of an unstable pair if she had married him.

It remains to prove that the deferred acceptance algorithm in which the men do the proposing is female
pessimal, that each woman ends up with the valid partner ranking lowest on her preference list. Suppose that
Jan is matched with Ken by the algorithm, but that Jan ranks Ken higher than she ranks Jerry. We must
show that Jerry is not a valid partner. Suppose there were a stable matching in which Jan was married to
Jerry. Because Ken got the highest ranked valid partner he could, in this hypothetical situation he would be
married to someone he liked less than Jan. But then Jan and Ken would be an unstable pair. So no such
matching exists.

This follows immediately from Exercise 32 because the roles of the sexes are reversed.
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This exercise deals with a problem studied in the following paper: V. M. F. Dias, G. D. da Fonseca, C. M. H. de
Figueiredo, and J. L. Szwarcfiter, “The stable marriage problem with restricted pairs,” Theoretical Computer
Science 306 (2003), 391-405. See that article for details, which are too complex to present here.

Consider the situation in Exercise 37. We saw there that it is possible to achieve a maximum lateness of 5. If
we schedule the jobs in order of increasing slackness, then Job 4 will be scheduled fourth and finish at time
65. This will give it a lateness of 10, which gives a maximum lateness worse than the previous schedule.

Clearly we cannot gain by leaving any idle time, so we may assume that the jobs are scheduled back-to-back.
Furthermore, suppose that at some point in time, say ty, we have a choice between scheduling Job A, with
time ta and deadline da, and Job B, with time tg and deadline dg, such that da > dg, one after the other.
We claim that there is no advantage in scheduling Job A first. Indeed, the lateness of any job other than A
or B is independent of the order in which we schedule these two jobs. Suppose we schedule A first. Then
its lateness, if any, is t9 + ta — da. This value is clearly exceeded by the lateness (if any) of B, which is
to+ta +tg —dp. This latter value is also greater than both ¢y +tg — dg (which is the lateness, if any, of B if
we schedule B first) and g +ta +tg —da (which is the lateness, if any, of A if we schedule B first). Therefore
the possible contribution toward maximum lateness is always worse if we schedule A first. It now follows that
we can always get a better or equal schedule (in terms of minimizing maximum lateness) if we swap any two
jobs that are out of order in terms of deadlines. Therefore we get the best schedule by scheduling the jobs in
order of increasing deadlines.

We can assign Job 1 and Job 4 to Processor 1 (load 10), Job 2 and Job 3 to Processor 2 (load 9), and Job 5
to Processor 3 (load 8), for a makespan of 10. This is best possible, because to achieve a makespan of 9, all
three processors would have to have a load of 9, and this clearly cannot be achieved with the given running
times.

In the pseudocode below, we have reduced the finding of the smallest load at a certain point to one statement;
in practice, of course, this can be done by looping through all p processors and finding the one with smallest
L; (the current load). The input is as specified in the preamble.

procedure assign(p,ti,ta, ..., ty)
for j:=1top
Lj =0

fori:=1ton
m := the value of j that minimizes L;
assign job ¢ to processor m

From Exercise 43 we know that the minimum makespan L satisfies two conditions: L > max;t; and L >
1—1) Z?Zl t;. Suppose processor i* is the one that ends up with the maximum load using this greedy algorithm,
and suppose job j* is the last job to be assigned to processor i*, giving it a total load of T« . We must show
that T;« < 2L. Now at the point at which job j* was assigned to processor *, its load was T« — ¢+, and
this was the smallest load at that time, meaning that every processor at that time had load at least T« — ;- .
Adding up the loads on all p processors we get » ©_ T; > p(T}« — t;+), where T; is the load on processor i
at that time. This is equivalent to Tj — tj« < % SP [ T;. But P | T; is the total load at that time, which
is just the sum of the times of all the jobs considered so far, so it is less than or equal to Z?:l t;. Combining
this with the second inequality in the first sentence of this solution gives Tj= —t;+ < L. It remains to figure
in the contribution of job j* to the load of processor ¢*. By the first inequality in the first sentence of this
solution, t;« < L. Adding these two inequalities gives us T« < 2L, as desired.
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CHAPTER 4
Number Theory and Cryptography

SECTION 4.1 Divisibility and Modular Arithmetic

2.

4.

10.

12.

14.

16.

a) 1| a since a=1-a. b) a |0 since 0 =a-0.

Suppose a | b, so that b = at for some ¢, and b | ¢, so that ¢ = bs for some s. Then substituting the first
equation into the second, we obtain ¢ = (at)s = a(ts). This means that a | ¢, as desired.

. Under the hypotheses, we have ¢ = as and d = bt for some s and t. Multiplying we obtain c¢d = ab(st),

which means that ab | ed, as desired.
The simplest counterexample is provided by a =4 and b =c= 2.

In each case we can carry out the arithmetic on a calculator.

a) Since 85 =40 and 44 — 40 = 4, we have quotient 44 div 8 =5 and remainder 44 mod 8 = 4.

b) Since 2137 = 777, we have quotient 777 div 21 = 37 and remainder 777 mod 21 = 0.

c) As above, we can compute 123 div 19 =6 and 123 mod 19 = 9. However, since the dividend is negative
and the remainder is nonzero, the quotient is —(6+1) = —7 and the remainder is 19 —9 = 10. To check that
—123 div 19 = —7 and —123 mod 19 = 10, we note that —123 = (—7)(19) + 10.

d) Since 1 div 23 =0 and 1 mod 23 =1, we have —1 div 23 = —1 and —1 mod 23 = 22.

e) Since 2002 div 87 = 23 and 2002 mod 87 = 1, we have —2002 div 87 = —24 and 2002 mod 87 = 86.

f) Clearly 0 div 17 =0 and 0 mod 17 = 0.

g) We have 1234567 div 1001 = 1233 and 1234567 mod 1001 = 334.

h) Since 100 div 101 =0 and 100 mod 101 = 100, we have —100 div 101 = —1 and —100 mod 101 = 1.

a) Because 100 mod 24 = 4, the clock reads the same as 4 hours after 2:00, namely 6:00.

b) Essentially we are asked to compute 12 — 45 mod 24 = —33 mod 24 = —33 + 48 mod 24 = 15. The clock
reads 15:00.

c) Because 168 = 0 (mod 24), the clock read 19:00.

This problem is equivalent to asking for the right-hand side mod 19. So we just do the arithmetic and
compute the remainder upon division by 19.

a) 13-11 =143 = 10 (mod 19) b) 8-3=24=5 (mod 19)

c) 11 —3 =8 (mod 19) d) 7-114+3-3 =86 =10 (mod 19)

e) 2-112+3-3% =269 = 3 (mod 19) f) 113 +4-3% = 1439 = 14 (mod 19)

Assume that a = b (mod m). This means that m|a — b, say a — b = mc, so that a = b+ mc. Now let us
compute ¢ mod m. We know that b = gm +r for some nonnegative r less than m (namely, r = b mod m).
Therefore we can write a = gm + r + me = (¢ + ¢)m + r. By definition this means that r must also equal
a mod m. That is what we wanted to prove.
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By Theorem 2 we have a = dg + r with 0 < r < d. Dividing the equation by d we obtain a/d = q + (r/d),
with 0 < (r/d) < 1. Thus by definition it is clear that ¢ is |a/d|. The original equation shows, of course,
that » = a — dg, proving the second of the original statements.

In each case we just apply the division algorithm (carry out the division) to obtain the quotient and remainder,
as in elementary school. However, if the dividend is negative, we must make sure to make the remainder
positive, which may involve a quotient 1 less than might be expected.

a) Since —17 = 2. (—9) + 1, the remainder is 1. That is, —17 mod 2 = 1. Note that we do not write
—17=2-(-8)—1,s0 —17 mod 2 # —1.

b) Since 144 = 7- 20 + 4, the remainder is 4. That is, 144 mod 7 = 4.

¢) Since —101 = 13- (—8) + 3, the remainder is 3. That is, —101 mod 13 = 3. Note that we do not write
—101 =13-(=7) — 10; we can’t have —101 mod 13 = —10, because a mod b is always nonnegative.

d) Since 199 =19 -10 + 9, the remainder is 9. That is, 199 mod 19 =9.

In each case we do the division and report the quotient (a div m) and the remainder (¢ mod m). It is
important to remember that the quotient needs to be rounded down, which means that if the dividend is
negative, as in part (a), the quotient is a number with a larger absolute value.

a) 111/99 is between 1 and 2, so the quotient is —2 and the remainder is —111—(—2)-99 = —111+198 = 87.
b) —9999/101 = —99, so that is the quotient and the remainder is 0.

c) 10299 div 999 = 10, 10299 mod 999 = 10299 — 10 - 999 = 309

d) 123456 div 1001 = 123, 123456 mod 1001 = 333

a) We can get into the desired range and stay within the same modular equivalence class by subtracting 2-23,
so the answer is a = 43 — 46 = —3.
b) 17—-29=-12,s80 a = —12. c)a=-1145-21=94

Among the infinite set of correct answers are 4, 16, —8, 1204, and —7016360.

We just subtract 3 from the given number; the answer is “yes” if and only if the difference is divisible by 7.
a) 37—3mod 7=34 mod 7=6#0, so 37 Z 3 (mod 7).

b) 66 —3 mod 7 =63 mod 7 =0, so 66 =3 (mod 7).

c) —17-3mod 7=—-20mod 7=1#0,s0 —17# 3 (mod 7).

d) 67—3mod 7=-70mod 7=0, s0 —67=3 (mod 7).

a) (177 mod 31 + 270 mod 31) mod 31 = (22 + 22) mod 31 = 44 mod 31 =13
b) (177 mod 31 - 270 mod 31) mod 31 = (22 - 22) mod 31 = 484 mod 31 =19

) (192 mod 41) mod 9 = (361 mod 41) mod 9 = 33 mod 9 =6

b) (322 mod 13)? mod 11 = (32768 mod 13)? mod 11 = 8% mod 11 = 64 mod 11 = 9
c) (7% mod 23)? mod 31 = (343 mod 23)? mod 31 = 21? mod 31 = 441 mod 31 =7
d) (212 mod 15)3 mod 22 = (441 mod 15)3 mod 22 = 62 mod 22 = 216 mod 22 = 18

From a = b (mod m) we know that b = a + sm for some integer s. Similarly, d = ¢+ tm. Subtracting, we
have b — d = (a — ¢) + (s — t)m, which means that a — ¢ =b— d (mod m).

From a = b (mod m) we know that b = a+ sm for some integer s. Multiplying by ¢ we have bc = ac+ s(mc),
which means that ac = be (mod mc).
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38. There are two cases. If n is even, then n = 2k for some integer %k, so n? = 4k?, which means that
n? =0 (mod 4). If n is odd, then n = 2k + 1 for some integer k, so n? = 4k? +4k +1 = 4(k*+ k) + 1, which
means that n? =1 (mod 4).

40. Write n = 2k + 1 for some integer k. Then n? = (2k +1)2 = 4k? + 4k + 1 = 4k(k + 1) + 1. Since either k or
k+1 is even, 4k(k + 1) is a multiple of 8. Therefore n? — 1 is a multiple of 8, so n? =1 (mod 8).

42. The closure property states that a +,, b € Z,,, whenever a,b € Z,,. Recall that Z,, = {0,1,2,...,m—1} and
that a +,, b is defined to be (a 4+ b) mod m. But this last expression will by definition be an integer in the
desired range. To see that addition in Z,, is associative, we must show that (a +., ) +,m ¢ =a +p, (b 4+, €).
This is equivalent to

((a+ b mod m) + ¢) mod m = (a+ (b+ ¢ mod m)) mod m.

This is true, because both sides equal (a+b+c¢) mod m, addition of integers is associative. Similarly, addition
in Z,, is commutative because addition in Z is commutative, and 0 is the additive identity for Z,, because
0 is the additive identity for Z. Finally, to see that m — a is an inverse of a modulo m, we just note that
(m—a) +m a=m—a+amod m =0. (It is also worth observing that 0 is its own additive inverse in Z,,.)

44. The distributive property of multiplication over addition states that a -, (b +m ¢) = (@ 4 b) +m (@ - ©)
whenever a, b, ¢ € Z,,. By the definition of these modular operations and Corollary 2, the left-hand side equals
a(b+ ¢) mod m and the right-hand side equals ab 4+ ac mod m. These are equal because multiplication is
distributive over addition for integers.

46. We will use + and - for these operations to save space and improve the appearance of the table. Notice
that we really can get by with a little more than half of this table if we observe that these operations are
commutative; thus it would suffice to list a +b and a - b only for a <b.

0+0=0 0+1=1 042=2 04+3=3 0+4=4 0+5=5
140=1 1+1=2 14+2=3 1+3=4 1+4=5 1+5=0
240=2 24+1=3 2+42=4 243=5 244=0 2+5=1
3+0=3 3+1=4 3+2=5 3+3=0 34+4=1 3+5=2
44+0=4 4+1=5 44+2=0 4+3=1 4+4=2 4+5=3
5+0=5 54+1=0 5+2=1 5+3=2 54+4=3 5+5=4

0-0=0 0-1=0 0-2=0 0-3=0 0-4=0 0-5=0
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SECTION 4.2 Integer Representations and Algorithms

2.

10.

12.

14.

16.

To convert from decimal to binary, we successively divide by 2. We write down the remainders so obtained
from right to left; that is the binary representation of the given number.

a) Since 321/2 is 160 with a remainder of 1, the rightmost digit is 1. Then since 160/2 is 80 with a remainder
of 0, the second digit from the right is 0. We continue in this manner, obtaining successive quotients of 40,
20, 10, 5, 2, 1, and 0, and remainders of 0, 0, 0, 0, 1, 0, and 1. Putting all these remainders in order
from right to left we obtain (1 0100 0001)2 as the binary representation. We could, as a check, expand this
binary numeral: 20 + 26 + 28 =1 + 64 + 256 = 321.

b) We could carry out the same process as in part (a). Alternatively, we might notice that 1023 = 1024 —1 =
219 — 1. Therefore the binary representation is 1 less than (100 0000 0000)s, which is clearly (11 1111 1111),.
¢) If we carry out the divisions by 2, the quotients are 50316, 25158, 12579, 6289, 3144, 1572, 786, 393,
196, 98, 49, 24, 12, 6, 3, 1, and 0, with remainders of 0, 0, 0, 1, 1, 0, 0, 0, 1,0, 0, 1, 0, 0, 0, 1, and
1. Putting the remainders in order from right to left we have (1 1000 1001 0001 1000).

.a) 1+2+8+16=27 b) 1+4+ 16+ 32+ 128 + 512 = 693

c) 2+4+8+16+ 32+ 128+ 256 + 512 = 958
d) 1+2+4+8+ 16+ 1024 + 2048 + 4096 + 8192 + 16384 = 31775

. We follow the procedure of Example 7.

a) (1111 0111), = (011 110 111)5 = (367)s

b) (1010 1010 1010), = (101 010 101 010)y = (5252)s

c) (111 0111 0111 0111), = (111 011 101 110 111)y = (73567)s
d) (101 0101 0101 0101), = (101 010 101 010 101)y = (52525)s

. Following Example 7, we simply write the binary equivalents of each digit. Since (A);g = (1010)3, (B)1s =

(1011)2, (0)16 = (1100)2, (D)16 = (1101)2, (E)16 = (1110)2, and (F)16 = (1111)2, we have (BADFACED)le
=(10111010110111111010110011101101)5. Following the convention shown in Exercise 3 of grouping binary
digits by fours, we can write this in a more readable form as 1011 1010 1101 1111 1010 1100 1110 1101.

We follow the procedure of Example 7.
a) (1111 0111)y = (F7)16 b) (1010 1010 1010)3 = (AAA)6
c) (111 0111 0111 0111)2 = (7777)16 d) (101 0101 0101 0101)2 = (5555)16

Following Example 7, we simply write the hexadecimal equivalents of each group of four binary digits.
Note that we group from the right, so the left-most group, which is just 1, becomes 0001. Thus we have
(0001 1000 0110 0011)o = (1863)16 -

Let (...hsh1ho)16 be the hexadecimal expansion of a positive integer. The value of that integer is, therefore,
ho+hy 164+ hy - 1624+ --- = hg+ hy - 2* + hy - 28 + ---. If we replace each hexadecimal digit h; by
its binary expansion (b;3b;2bi1bi0)2, then h; = b + 2b;1 + 4b;2 + 8b;3. Therefore the value of the entire
number is bgg + 2bp1 + 4bo2 + 8bos + (b1o + 2b11 + 4b12 + 8b13) - 24 4+ (b2o + 2b21 + 4boo + 8b23) 28 =
boo + 2bo1 + 4bga + 8bgs + 24b1g + 2°b11 + 26019 + 27b13 + 28bag + 2%b21 + 21089y + 2Mby3 + - - -, which is the
value of the binary expansion (.. .bagbasba1bagb13b12011b10b03b02001b00)2 -

Let (...dad1dp)s be the octal expansion of a positive integer. The value of that integer is, therefore, dy + d; -
8+dy-824--- =dy+di-234+dy-26+-- .. If we replace each octal digit d; by its binary expansion (biobi1bio)2,
then d; = by + 2b;1 +4b;o . Therefore the value of the entire number is bog + 2bg1 + 4bga + (b1o + 2b11 + 4b12) -
23 + (bgo + 2b21 + 4bag) - 26+ - - - = boo + 2bo1 + 4boz + 23b19 + 2%b11 + 2°b12 + 20b90 4 2091 + 2%bg + - - -, which
is the value of the binary expansion (...baaba1bapb12b11b10b02b01b00)2 -
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20.

22.

24.

26.

Since we have procedures for converting both octal and hexadecimal to and from binary (Example 7), to
convert from hexadecimal to octal, we first convert from hexadecimal to binary and then convert from binary
to octal.

Note that 64 = 26 = 82. In base 64 we need 64 symbols, from 0 up to something representing 63 (maybe we
could use, for example, digits up to 9, then lower and upper case letters from a to Z, and finally symbols @
and $ to represent 62 and 63). Corresponding to each such symbol would be a binary string of six digits, from
000000 for O, through 001010 for a, 100011 for z, 100100 for A, 111101 for Z, 111110 for @, and 111111
for $. To translate from binary to base 64, we group the binary digits from the right in groups of 6 and use
the list of correspondences to replace each six bits by one base-64 digit. To convert from base 64 to binary,
we just replace each base-64 digit by its corresponding six bits.

For conversions between octal and base 64, we change the binary strings in our table to octal strings,
replacing each 6-bit string by its 2-digit octal equivalent, and then follow the same procedures as above,
interchanging base-64 digits and 2-digit strings of octal digits.

We can just add and multiply using the grade-school algorithms (working column by column starting at the
right), using the addition and multiplication tables in base three (for example, 24+ 1 =10 and 2-2 = 11).
When a digit-by-digit answer is too large to fit (i.e., greater than 2), we “carry” into the next column. Note
that we can check our work by converting everything to decimal numerals (the check is shown in parentheses
below). A calculator or computer algebra system makes doing the conversions tolerable. For convenience, we
leave off the “3” subscripts throughout.
a) 112 4 210 = 1022 (decimal: 14 + 21 = 35)

112-210 = 101,220 (decimal: 14 -21 = 294)
b) 2112 + 12021 = 21,210 (decimal: 68 + 142 = 210)

2112 - 12021 = 111,020,122 (decimal: 68 - 142 = 9656 )
¢) 20001 4+ 1111 = 21,112 (decimal: 163 + 40 = 203)

20001 - 1111 = 22,221,111 (decimal: 163 - 40 = 6520)
d) 120021 + 2002 = 122,100 (decimal: 412 4 56 = 468)

120021 - 2002 = 1,011,122,112 (decimal: 412 - 56 = 23,072)

We can just add and multiply using the grade-school algorithms (working column by column starting at the
right), using the addition and multiplication tables in base sixteen (for example, 7+ 8 = F and 7-8 = 38).

)

When a digit-by-digit answer is too large to fit (i.e., greater than F), we “carry” into the next column. Note
that we can check our work by converting everything to decimal numerals (the check is shown in parentheses
below). A calculator or computer algebra system makes doing the conversions tolerable, specially if we use
built-in functions for doing so. For convenience, we leave off the “16” subscripts throughout.
a) 1AB + BBC = D67 (decimal: 427 + 3004 = 3431)

1AB - BBC = 139,294 (decimal: 427 - 3004 = 1,282,708)
b) 20CBA + A01 = 21,6BB (decimal: 134,330 + 2561 = 136,891)

20CBA - A01 = 14,815,0BA (decimal: 134,330 - 2561 = 344,019,130)
c) ABCDE + 1111 = AC,DEF (decimal: 703,710 + 4369 = 708,079)

ABCDE - 1111 = B7,414,8BE (decimal: 703,710 - 4369 = 3,074,508,990)
d) EOOOOE + BAAA = EOB,AB8 (decimal: 14,680,078 4 47,786 = 14,727,864)

EO000E - BAAA = A;354,CA3,54C (decimal: 14,680,078 - 47,786 = 701,502,207,308)

In effect, this algorithm computes 11 mod 645, 112 mod 645, 11* mod 645, 11% mod 645, 11! mod 645,
.., and then multiplies (modulo 645) the required values. Since 644 = (1010000100)2, we need to multiply



92

28.

30.

32.

34.

36.

38.

Chapter 4 Number Theory and Cryptography

together 114 mod 645, 11'%® mod 645, and 11°'2 mod 645, reducing modulo 645 at each step. We compute
by repeatedly squaring: 112 mod 645 = 121, 11* mod 645 = 1212 mod 645 = 14641 mod 645 = 451,
118 mod 645 = 4512 mod 645 = 203401 mod 645 = 226, 11'® mod 645 = 2262 mod 645 = 51076 mod 645 =
121. At this point we notice that 121 appeared earlier in our calculation, so we have 1132 mod 645 =
1212 mod 645 = 451, 11%* mod 645 = 4512 mod 645 = 226, 11'2® mod 645 = 2262 mod 645 = 121,
11%°6 mod 645 = 451, and 11°'2 mod 645 = 226. Thus our final answer will be the product of 451, 121, and
226, reduced modulo 645. We compute these one at a time: 451-121 mod 645 = 54571 mod 645 = 391, and
391 - 226 mod 645 = 88366 mod 645 = 1. So 115 mod 645 = 1. A computer algebra system will verify
this; use the command “1 &~ 644 mod 645;” in Maple, for example. The ampersand here tells Maple to use
modular exponentiation, rather than first computing the integer 11644, which has over 600 digits, although
it could certainly handle this if asked. The point is that modular exponentiation is much faster and avoids
having to deal with such large numbers.

In effect this algorithm computes powers 123 mod 101, 1232 mod 101, 123* mod 101, 123% mod 101,
123'° mod 101, ..., and then multiplies (modulo 101) the required values. Since 1001 = (1111101001)5, we
need to multiply together 123 mod 101, 123% mod 101, 12332 mod 101, 123%* mod 101, 123'%® mod 101,
123256 mod 101, and 123°'2 mod 101, reducing modulo 101 at each step. We compute by repeatedly
squaring: 123 mod 101 = 22, 1232 mod 101 = 222 mod 101 = 484 mod 101 = 80, 123* mod 101 =
802 mod 101 = 6400 mod 101 = 37, 123°% mod 101 = 372 mod 101 = 1369 mod 101 = 56, 1236 mod 101 =
562 mod 101 = 3136 mod 101 = 5, 12332 mod 101 = 52 mod 101 = 25, 12354 mod 101 = 252 mod 101 =
625 mod 101 = 19, 123'28 mod 101 = 192 mod 101 = 361 mod 101 = 58, 123?°°® mod 101 = 58 mod 101 =
3364 mod 101 = 31, and 123°'2 mod 101 = 312 mod 101 = 961 mod 101 = 52. Thus our final answer will
be the product of 22, 56, 25, 19, 58, 31, and 52. We compute these one at a time modulo 101: 22 .56 is
20, 20-25 is 96, 96-19 is 6, 6-58 is 45, 45 - 31 is 82, and finally 82-52 is 22. So 123'°°! mod 101 = 22.

a) 5=9-3—-1  b)13=9+3+1 ¢)37=27+9+1 d) 79=81-3+1

The key fact here is that 10 = —1 (mod 11), and so 10* = (—1)* (mod 11). Thus 10* is congruent to 1 if k is
even and to —1 if k is odd. Let the decimal expansion of the integer a be given by (an—1a,—2...asaza1a9)10-
Thus a = 10" Ya,_1 + 10" 2a,_5 + -+ + 10a; + ag. Since 10* = (~1)* (mod 11), we have a = +a,,_1 F
Ap—2 + -+ —as + as —a; + ag (mod 11), where signs alternate and depend on the parity of n. Therefore
a =0 (mod 11) if and only if (ag + az + a4+ ---) — (a1 + az + as + - - ), which we obtain by collecting the
odd and even indexed terms, is congruent to 0 (mod 11). Since being divisible by 11 is the same as being
congruent to 0 (mod 11), we have proved that a positive integer is divisible by 11 if and only if the sum of
its decimal digits in even-numbered positions minus the sum of its decimal digits in odd-numbered positions
is divisible by 11.

a) Since the binary representation of 22 is 10110, the six bit one’s complement representation is 010110.

b) Since the binary representation of 31 is 11111, the six bit one’s complement representation is 011111.

c¢) Since the binary representation of 7 is 111, we complement 000111 to obtain 111000 as the one’s comple-
ment representation of —7.

d) Since the binary representation of 19 is 10011, we complement 010011 to obtain 101100 as the one’s
complement representation of —19.

Every 1 is changed to a 0, and every 0 is changed to a 1.

We just combine the two ideas in Exercises 36 and 37: to form a —b, we compute a+ (—b), using Exercise 36
to find —b and Exercise 37 to find the sum.
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Following the definition, we find the two’s complement expansion of a positive number simply by representing it
in binary, using six bits; and we find the two’s complement expansion of a negative number —x by representing
2° — z in binary using five bits and preceding it with a 1.

a) Since 22 is positive, and its binary expansion is 10110, the answer is 010110.

b) Since 31 is positive, and its binary expansion is 11111, the answer is 011111.

c) Since —7 is negative, we first find the 5-bit binary expansion of 2% — 7 = 25, namely 11001, and precede
it by a 1, obtaining 111001.

d) Since —19 is negative, we first find the 5-bit binary expansion of 2° — 19 = 13, namely 01101, and precede
it by a 1, obtaining 101101.

We can experiment a bit to find a convenient algorithm. We saw in Exercise 40 that the expansion of —7
is 111001, while of course the expansion of 7 is 000111. Apparently to find the expansion of —m from that
of m we complement each bit and then add 1, working in base 2. Similarly, the expansion of —8 is 111000,
whereas the expansion of 8 is 001000; again 110111 + 1 = 111000. At the extremes (using six bits) we have
1 represented by 000001, so —1 is represented by 111110+ 1 = 111111; and 31 is represented by 011111, so
—31 is represented by 100000 + 1 = 100001.

We just combine the two ideas in Exercises 42 and 43. To form a — b, we compute a+ (—b), using Exercise 42
to find —b and Exercise 43 to find the sum.

If the number is positive (i.e., the left-most bit is 0), then the expansions are the same. If the number is
negative (i.e., the left-most bit is 1), then we take the one’s complement representation and add 1, working
in base 2. For example, the one’s complement representation of —19 using six bits is, from Exercise 34,
101100. Adding 1 we obtain 101101, which is the two’s complement representation of —19 using six bits, from
Exercise 40.

We obtain these expansions from the top down. For example in part (e) we compute that 7! > 1000 but
6! < 1000, so the highest factorial appearing is 6! = 720. We use the division algorithm to find the quotient
and remainder when 1000 is divided by 720, namely 1 and 280, respectively. Therefore the expansion begins
16! and continues with the expansion of 280, which we find in the same manner.

a) 2=2| b) 7=3!+41! c) 19=3-31+1! d) 87=3-41+2-31+2!+1!

e) 1000 =6!4+2-5!4+4!+2-31+2-2! f) 1000000 =2-9'4+6-8'4+6-7'+2-6!+5-5!+41+2-31+2. 2!

The algorithm is essentially the same as the usual grade-school algorithm for adding. We add from right to
left, one column at a time, carrying to the next column if necessary. A carry out of the column representing 7!
is needed whenever the sum obtained for that column is greater than ¢, in which case we subtract i + 1 from
that digit and carry 1 into the next column (since (i +1)! = (i 4+ 1) - a!).

The partial products are 11100 and 1110000, namely 1110 shifted one place and three places to the left. We
add these two numbers, obtaining 10001100.

Subtraction is really just like addition, so the number of bit operations should be comparable, namely O(n).
More specifically, if we analyze the algorithm for Exercise 53, we see that the loop is executed n times, and
only a few operations are performed during each pass.

In the worst case, each bit of a has to be compared to each bit of b, so O(n) comparisons are needed. An
exact analysis of the procedure given in the solution to Exercise 55 shows that n + 1 comparisons of bits are
needed in the worst case, assuming that the logical “and” condition in the while loop is evaluated efficiently
from left to right (so that ag is not compared to by there).
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A multiplication modulo m consists of multiplying two integers, each at most logm bits long (since they
are less than m), followed by a division by m, which is also logm bits long. Thus this takes (logm)? bit
operations by Example 11 and the analysis of Algorithm 4 mentioned in the text. This is what goes on inside
the loop of Algorithm 5. The loop is iterated logn times. Therefore the total number of bit operations is
O((logm)?logn).

SECTION 4.3 Primes and Greatest Common Divisors

2.

10.

The numbers 19, 101, 107, and 113 are prime, as we can verify by trial division. The numbers 27 = 3% and
93 = 3 - 31 are not prime.

. We obtain the answers by trial division. The factorizations are 39 = 3 - 13, 81 = 3*, 101 = 101 (prime),

143 = 11-13, 289 = 172, and 899 = 29 - 31.

. A 0 appears at the end of a number for every factor of 10 (= 2-5) the number has. Now 100! certainly has

more factors of 2 than it has factors of 5, so the number of factors of 10 it has is the same as the number of
factors of 5. Each of the twenty numbers 5, 10, 15, ..., 100 contributes a factor of 5 to 100!, and in addition
the four numbers 25, 50, 75, and 100 contribute one more factor of 5. Therefore there are 24 factors of 5
in 100!, so 100! ends in exactly 24 0’s.

. The input is a positive integer n. We successively look for small factors d (starting with d = 2 and incre-

menting d once we know that d is no longer a factor of what remains), which will necessarily be prime. When
we find a factor, we divide out by that factor and keep going. We will print the factors as we find them.
(Alternatively, they could be stored in a list of some sort.) We stop when the remaining number is 1 (all
factors have been found). The pseudocode below accomplishes this. Notice that we could be a little more
sophisticated and use only prime trial divisors, but it hardly seems worth the effort, since it would take time
to see which trial divisors are prime. Alternatively, we could handle d = 2 by itself and then loop through
only odd values of d, starting at 3 and incrementing by 2.

procedure factorization(n : positive integer)

d:=2
while n > 1
if n mod d =0 then
print d
n:=n/d
else
d:=d+1

We first establish the identity in the hint. If we let y = 2*, then the claimed identity is
W+ =G+ —y Py =y 1),

which is easily seen to be true by multiplying out the right-hand side and noticing the “telescoping” that
occurs. We want to show that m is a power of 2, i.e., that its only prime factor is 2. Suppose to the contrary
that m has an odd prime factor ¢t and write m = kt, where k is a positive integer. Letting x = 2 in the
identity given in the hint, we have 2™ + 1 = (2* + 1)(the other factor). Because 2¥ + 1 > 1 and the prime
2™ 4+ 1 can have no proper factor greater than 1, we must have 2 +1 =24+ 1, so m = k and t = 1,
contradicting the fact that ¢ is prime. This completes the proof by contradiction.
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We follow the hint. There are n numbers in the sequence (n + D)+ 2, (n+ !+ 3, (n+ 1)! +4, ...,
(n+ 1)+ (n+1). The first of these is composite because it is divisible by 2; the second is composite because
it is divisible by 3; the third is composite because it is divisible by 4; ...; the last is composite because it is
divisible by n + 1. This gives us the desired n consecutive composite integers.

We must find, by inspection with mental arithmetic, the greatest common divisors of the numbers from 1 to
11 with 12, and list those whose gcd is 1. These are 1, 5, 7, and 11. There are so few since 12 had many
factors—in particular, both 2 and 3.

Since these numbers are small, the easiest approach is to find the prime factorization of each number and look
for any common prime factors.

a) Since 21 =3-7, 34 =2-17, and 55 =511, these are pairwise relatively prime.

b) Since 85 =517, these are not pairwise relatively prime.

c) Since 25 = 52, 41 is prime, 49 = 72, and 64 = 26, these are pairwise relatively prime.

d) Since 17, 19, and 23 are prime and 18 = 2 - 32, these are pairwise relatively prime.

a) Since 6 = 14 2 + 3, and these three summands are the only proper divisors of 6, we conclude that 6 is
perfect. Similarly 28 =1+2+4+ 7+ 14.

b) We need to find all the proper divisors of 2P~1(2” — 1). Certainly all the numbers 1, 2, 4, 8, ..., 2P~1
are proper divisors, and their sum is 2P — 1 (this is a geometric series). Also each of these divisors times
2P — 1 is also a divisor, and all but the last is proper. Again adding up this geometric series we find a sum
of (27 —1)(2P=t —1). There are no other other proper divisors. Therefore the sum of all the divisors is
(2P —1)+ (2P —=1)(2P7 1 —=1) = (2? = 1)(1 +2P~t — 1) = (2P — 1)2P~! | which is our original number. Therefore
this number is perfect.

We need to find a factor if there is one, or else check all possible prime divisors up to the square root of the
given number to verify that there is no nontrivial divisor.

a) 27 — 1 = 127. Division by 2, 3, 5, 7, and 11 shows that these are not factors. Since /127 < 13, we are
done; 127 is prime.

b) 2 — 1 =511 =773, so this number is not prime.

c) 211 — 1 =2047 = 23 -89, so this number is not prime.

d) 213 —1=18191. Division by 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, and 89 (phew!) shows that these are not factors. Since v/8191 < 97, we are done; 8191 is prime.

Certainly if n is prime, then all the integers from 1 to n — 1 are less than or equal to n and relatively prime
to n, but no others are, so ¢(n) = n — 1. Conversely, suppose that n is not prime. If n = 1, then we have
(1) =1#1—-1. If n > 1, then n = ab with 1 < a <n and 1 < b < n. Note that neither a nor b is
relatively prime to n. Therefore the number of positive integers less than or equal to n and relatively prime
to n is at most n — 3 (since a, b, and n are not in this collection), so ¢(n) #mn — 1.

We form the greatest common divisors by finding the minimum exponent for each prime factor.
a) 22.3%.52 b) 2-3-11 c) 17 d) 1 e) b f)2:3-5-7

We form the least common multiples by finding the maximum exponent for each prime factor.
a) 25.35.5°  b)211.39.5.7.11-13-17%  ¢) 177 d) 22.5%.7-13
e) undefined (0 is not a positive integer) f)2-3-5-7

We have 1000 = 23 -5% and 625 = 5%, so ged(1000,625) = 5% = 125, and lem(1000, 625) = 23 -5 = 5000. As
expected, 125 - 5000 = 625000 = 1000 - 625.
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By Exercise 31 we know that the product of the greatest common divisor and the least common multiple of two
numbers is the product of the two numbers. Therefore the answer is (27-38.52.711)/(23.3%.5) = 24.34.5. 711,

To apply the Euclidean algorithm, we divide the larger number by the smaller, replace the larger by the smaller
and the smaller by the remainder of this division, and repeat this process until the remainder is 0. At that
point, the smaller number is the greatest common divisor.

a) ged(1,5) = ged(1,0) =1 b) gcd(100,101) = ged(100,1) = ged(1,0) =1

c) ged(123,277) = ged(123,31) = ged(31, 30) = ged(30,1) = ged(1,0) =1

d) ged(1529,14039) = ged(1529,278) = ged (278, 139) = ged(139,0) = 139

e) ged(1529,14038) = ged(1529,277) = ged (277, 144) = ged (144, 133) = ged(133,11) = ged(11,1) = ged(1,0)
=1

f) ged(11111,111111) = ged(11111,1) = ged(1,0) = 1

We need to divide successively by 34, 21, 13, 8, 5, 3, 2, and 1, so eight divisions are required.

The statement we are asked to prove involves the result of dividing 2% — 1 by 2° — 1. Let us actually carry
out that division algebraically—long division of these expressions. The leading term in the quotient is 2¢~°
(as long as a > b), with a remainder at that point of 20=® — 1. If now a — b > b then the next step
in the long division produces the next summand in the quotient, 2%~2°  with a remainder at this stage of
2¢=20 _ 1. This process of long division continues until the remainder at some stage is less than the divisor,
ie., 207k _ 1 < 2> — 1. But then the remainder is 2¢7*® — 1, and clearly a — kb is exactly « mod b. This

completes the proof.

By Exercise 37, 2¢ —1 and 2° — 1 are relatively prime precisely when 28°d(¢:%) _1 =1 which happens if and
only if ged(a,b) = 1. Thus it is enough to check here that 35, 34, 33, 31, 29, and 23 are relatively prime.
This is clear, since the prime factorizations are, respectively, 35, 2-17, 3-11, 31, 29, and 23.

a) In order to find the coefficients s and ¢ such that 9s + 11t = ged(9,11), we carry out the steps of the
Euclidean algorithm.
11=94+2
9=4-2+4+1

Then we work up from the bottom, expressing the greatest common divisor (which we have just seen to be 1)
in terms of the numbers involved in the algorithm, namely 11, 9, and 2. In particular, the last equation tells
us that 1 =9—4-2, so that we have expressed the gcd as a linear combination of 9 and 2. But now the first
equation tells us that 2 = 11 — 9; we plug this into our previous equation and obtain

1=9-4-(11-9)=5-9—4-11.
Thus we have expressed 1 as a linear combination (with integer coefficients) of 9 and 11, namely ged(9,11) =
5-9—4-11.
b) Again, we carry out the Euclidean algorithm. Since 44 = 33+ 11, and 11|33, we know that ged(33,44) =
11. From the equation shown here, we can immediately write 11 = (—1) - 33 + 44.

¢) The calculation of the greatest common divisor takes several steps:

78=2-35+8
35=4-8+3
8=2-3+2

3=2+1
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Then we need to work our way back up, successively plugging in for the remainders determined in this

calculation:
1=3-2

—3-(8-2-3)=3-3-8
=3.(35-4-8)—8=3-35—13-8
=3.35—13-(78—2-35)=29-35— 13- 78

d) Here are the two calculations—down to the ged using the Euclidean algorithm, and then back up by
substitution until we have expressed the gcd as the desired linear combination of the original numbers.

55 =2-21413
21 =13 +38
13=8+5
8=5+3
5=3+2
3=2+1

Thus the greatest common divisor is 1.
1=3-2
=3-(5-3)=2-3-5
=2-8-5)—-5=2-8-3-5
=2.-8-3-(13-8)=5-8-3-13
=5-(21-13)—-3-13=5-21—-8-13
=5-21-8-(55—-2-21)=21-21-8-55
e) We compute the greatest common divisor in one step: 203 = 2-101 + 1. Therefore we have 1 =

(—2) - 101 + 203.

f) We compute the greatest common divisor using the Euclidean algorithm:

323=2-124+75

124 =75+ 49
75 =49+ 26
49 =26 423
26 =23+3
23=7-3+4+2
3=2+1

Thus the greatest common divisor is 1.
1=3-2

=3-(23-7-3)=8-3-23
=8-(26—-23)—23=8-26—9-23
=8-26—9-(49—-26) =17-26—9-49
=17-(75—-49)—9-49=17-75—26-49
=17-75—-26- (124 — 75) =43 - 75 — 26 - 124
=43-(323-2-124) —26-124 =43-323 —112-124
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g) Here are the two calculations—down to the ged using the Euclidean algorithm, and then back up by
substitution until we have expressed the ged as the desired linear combination of the original numbers.

2339 = 2002 + 337
2002 =5-337 + 317

337=317+20
317=15-20+4+17
20=17+3
17=5-3+2
3=2+1

Thus the greatest common divisor is 1.
1=3-2
=3-(17-5-3)=6-3—17
=6-(20—17)—-17=6-20—"7-17
=6-20—7-(317—15-20) =111-20 — 7- 317
=111-(337—-317) —7-317=111-337 — 118 - 317
=111-337 —118- (2002 — 5 - 337) = 701 - 337 — 118 - 2002
=701 - (2339 — 2002) — 118 - 2002 = 701 - 2339 — 819 - 2002
h) The procedure is the same:
4669 = 3457 + 1212
3457 =2-1212 + 1033
1212 = 1033 + 179
1033 =5-179 4 138

179 =138 441
138 =3-41+4+15
41=2-15+4+11
15=11+4
11=2-443
4=3+1

Thus the greatest common divisor is 1.
1=4-3

=4—(11-2-4)=3-4-11
=3-(15-11)—-11=3-15—-4-11
=3-15—-4-(41-2-15)=11-15—-4-41
=11-(138—-3-41) —4-41=11-138 —37-41
=11-138 —37- (179 — 138) = 48 - 138 — 37 - 179
=48-(1033 —5-179) — 37-179 =48 - 1033 — 277 - 179
=48-1033 — 277 - (1212 — 1033) = 325 - 1033 — 277 - 1212
=325 (3457 — 2-1212) — 277 - 1212 = 325 - 3457 — 927 - 1212
= 325+ 3457 — 927 - (4669 — 3457) = 1252 - 3457 — 927 - 4669
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i) The procedure is the same:
13422 = 10001 + 3421

10001 = 2 - 3421 + 3159
3421 = 3159 + 262
3159 =12-262+ 15
262 =17-1547
15=2-7+1
Thus the greatest common divisor is 1.
1=15-2.7

=15—-2-(262—17-15)=35-15—2-262
=35-(3159 — 12-262) — 2 - 262 = 35 - 3159 — 422 - 262
= 353159 — 422 - (3421 — 3159) = 457 - 3159 — 422 - 3421
=457 - (10001 — 2 - 3421) — 422 - 3421 = 457 - 10001 — 1336 - 3421
=457 - 10001 — 1336 - (13422 — 10001) = 1793 - 10001 — 1336 - 13422

We take a = 356 and b = 252 to avoid a needless first step. When we apply the Euclidean algorithm we
obtain the following quotients and remainders: ¢ =1, ro =104, go =2, r3 =44, g3 =2, r4 = 16, q4 = 2,
r5s =12, gs =1, r¢ = 4, g6 = 3. Note that n = 6. Thus we compute the successive s’s and t’s as follows,

using the given recurrences:

So=8g—q1s51=1—-1-0=1, to=tg—q1t1=0—1-1=-1
83 =81 — (@250 =0—2-1= -2, t3=1t1 —qato=1—-2-(-1)=3
S4=82—q3s3=1—2-(—2)=5, ty=ty—q3tz3=—-1-2-3=-7
85 =83 —qu84 = —2—2-5=—12, s =1t3 —quty =3—-2-(=7)=17
86 =84 —¢q585 =5—1-(—12) =17, te =ty —qsts = —7—1-17T=—24

Thus we have sga + tgb = 17 - 356 + (—24) - 252 = 4, which is ged(356,252).

We take a = 100001 and b = 1001 to avoid a needless first step. When we apply the Euclidean algorithm we
obtain the following quotients and remainders: ¢ =99, ro =902, g2 =1, r3 =99, g3 =9, ry =11, g4 = 9.
Note that n = 4. Thus we compute the successive s’s and t’s as follows, using the given recurrences:

S =8 —q151=1—-99-0=1, to=1t)—q1t1 =0-99-1=-99
S3 =81 — (@252 =0—1-1=-1, t3:t1—Q2t2:1—1'(—99):100
s4=s82—q3s3=1-9-(-1) =10, ta =t — g3ty = —99 — 9- 100 = —999

Thus we have sqa + t4b = 10 - 100001 + (—999) - 1001 = 11, which is ged(100001,1001).

The number of (positive) factors that a positive integer n has can be determined from the prime factorization
of n. If we write this prime factorization as n = pi'p§? - p¢r, then there are (e; + 1)(ea + 1) - (er + 1)
different factors. This follows from the ideas in Chapter 6. Specifically, in choosing a factor we can choose
0,1, 2, ..., e; of the p; factors, a total of e; + 1 choices; for each of these there are e; + 1 choices as to
how many po factors to include, and so on. If we don’t want to go through the analysis using the ideas given
below, we could simply compute the number of factors for each n, starting at 1 (perhaps using a computer
program), and thereby obtain the answers by “brute force.”

a) If an integer is to have exactly three different factors (we assume “positive factors” is intended here), then
n must be the square of a prime number; that is the only way to make (e; +1)(ex +1)--- (e, +1) = 3. The
smallest prime number is 2. So the smallest positive integer with exactly three factors is 22 = 4.
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b) This time we want (e; +1)(ea+1)--- (e, +1) =4. We can do this with » =1 and e; = 3, or with r =2
and e; = ey = 1. The smallest numbers obtainable in these ways are 23 = 8 and 2 -3 = 6, respectively. So
the smallest number with four factors is 6.

c) This time we want (e; +1)(ez +1)--- (e, + 1) = 5. We can do this only with » =1 and e; = 4, so the
smallest such number is 2 = 16.

d) This time we want (e; + 1)(es +1)---(e, + 1) = 6. We can do this with » = 1 and e; = 5, or with
r=2and e; =2 and ey = 1. The smallest numbers obtainable in these ways are 2° = 32 and 22 -3 = 12,
respectively. So the smallest number with six factors is 12.

e) This time we want (e; + 1)(e2 +1)--- (e, + 1) = 10. We can do this with » = 1 and e; = 9, or with
r =2 and e; =4 and e; = 1. The smallest numbers obtainable in these ways are 2° = 512 and 2* -3 = 48,
respectively. So the smallest number with ten factors is 48.

Obviously there are no definitive answers to these problems, but we present below a reasonable and satisfying
rule for forming the sequence in each case.

a) All the entries are primes. In fact, the n'" term is the smallest prime number greater than or equal to n.
b) Here we see that the sequence jumps at the prime locations. We can state this succinctly by saying that
the n'"" term is the number of prime numbers not exceeding n.

c¢) There are Os in the prime locations and 1s elsewhere. In other words, the nt" term of the sequence is 0 if
n is a prime number and 1 otherwise.

d) This sequence is actually important in number theory. The n'" term is —1 if n is prime, 0 if n has a
repeated prime factor (for example, 12 = 22-3, so 2 is a repeated prime factor of 12 and therefore the twelfth
term is 0), and 1 otherwise (if n is not prime but is square-free).

e) The n'™ term is 0 if » has two or more distinct prime factors, and is 1 otherwise. In other words the n'®
term is 1 if n is a power of a prime number.

f) The n'" term is the square of the n*™® prime.

From a = b (mod m) we know that b = a + sm for some integer s. Now if d is a common divisor of a and
m, then it divides the right-hand side of this equation, so it also divides b. We can rewrite the equation as
a = b— sm, and then by similar reasoning, we see that every common divisor of b and m is also a divisor
of a. This shows that the set of common divisors of ¢ and m is equal to the set of common divisors of b
and m, so certainly ged(a, m) = ged(b,m).

We compute the first several of these: 241 = 3 (which is prime), 2-34+1 = 7 (which is prime), 2-3-5+1 = 31
(which is prime), 2-3-5-7+ 1= 211 (which is prime), 2-3-5-7-11+1 = 2311 (which is prime). However,
2-3-5-7-11-13+1 = 30031 = 59 - 509, so the conjecture is false. Notice, however, that the prime factors in
this last case were necessarily different from the primes being multiplied.

Suppose by way of contradiction that g1, g2, ..., g, are the only primes of the form 3k + 2. Notice that this
list necessarily includes 2. Let @ = 3q1q2---¢q, — 1. Notice that neither 3 nor any prime of the form 3k + 2
is a factor of ). But Q >3-2—1 =5 > 1, so it must have prime factors. Therefore all of its prime factors
are of the form 3k + 1. However, the product of numbers of the form 3k 4 1 is again of that form, because
(Bk+1)38l+1) =3Bkl + k+1)+ 1. Patently @ is not of that form, and we have a contradiction, which
completes the proof.

Define the function f as suggested from the positive rational numbers to the positive integers. This is a one-
to-one function, because if we are given the value of f(p/q), we can immediately recover p and ¢ uniquely
by writing f(p/q) in base eleven and noting what appears to the left of the one and only A in the expansion
and what appears to the right (and interpret these as numerals in base ten). Thus we have a one-to-one
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correspondence between the set of positive rational numbers and an infinite subset of the natural numbers,
which is countable; therefore the set of positive rational numbers is countable.

SECTION 4.4 Solving Congruences

2. We need to show that 13-937 = 1 (mod 2436), or in other words, that 13-937 — 1 = 12180 is divisible by
2436. A calculator shows that it is, since 12180 = 2436 - 5.

4. We need a number that when multiplied by 2 gives a number congruent to 1 modulo 17. Since 18 = 1 (mod 17)
and 2-9 =18, it follows that 9 is an inverse of 2 modulo 17.

6. a) The first step of the procedure in Example 1 yields 17 = 8 -2 + 1, which means that 17—8-2=1, so —8
is an inverse. We can also report this as 9, because —8 =9 (mod 17).
b) We need to find s and ¢ such that 345489t = 1. Then s will be the desired inverse, since 34s = 1 (mod 89)
(i.e., 34s — 1 = —89¢ is divisible by 89). To do so, we proceed as in Example 2. First we go through the
Euclidean algorithm computation that ged(34,89) = 1:

89=2-34+21
34=21+13
21 =13+38
13=8+5
8=5+3
5=3+2
3=2+1

Then we reverse our steps and write 1 as the desired linear combination:
1=3-2
=3-(5-3)=2-3-5
=2-(8-5)—-5=2-8—-3-5
=2.8-3-(13-8)=5-8—-3-13
=5-(21-13)—-3-13=5-21-8-13
=5-21-8-(34—-21)=13-21—-8-34
=13-(890—-2-34)—-8-34=13-89—-34-34
Thus s = —34, so an inverse of 34 modulo 89 is —34, which can also be written as 55.
c) We need to find s and ¢ such that 144s + 233t = 1. Then clearly s will be the desired inverse, since

144s = 1 (mod 233) (i.e., 144s — 1 = —233¢ is divisible by 233). To do so, we proceed as in Example 2. In
fact, once we get to a certain point below, all the work was already done in part (b). First we go through the



102 Chapter 4 Number Theory and Cryptography

Euclidean algorithm computation that ged(144,233) = 1:

233 =144+ 89
144 =89+ 55
89 =55+ 34
55 =34+21
34=21+13
21=13+38
13=8+5
8=95+3
5=3+4+2
3=2+1
Then we reverse our steps and write 1 as the desired linear combination:

1=3-2
=3-(5—-3)=2-3-5
=2-(8-5)-5=2-8-3-5
=2-8-3-(13-8)=5-8-3-13
=5-(21-13)-3-13=5-21—-8-13
=5-21-8-(34-21)=13-21-8-34
=13-(55—-34)-8-34=13-55—21-34
=13-55—-21-(89 —55) =34-55—21-89
=34-(144—-89) —21-89 =34 -144 — 55- 89
=34-144 — 55 - (233 — 144) = 89 - 144 — 55 - 233
Thus s = 89, so an inverse of 144 modulo 233 is 89, since 144 - 89 = 12816 = 1 (mod 233).

d) The first step in the Euclidean algorithm calculation is 1001 = 5-200+ 1. Thus —5-2004 1001 = 1, and
—5 (or 996) is the desired inverse.

8. If x is an inverse of @ modulo m, then by definition ax — 1 = tm for some integer ¢. If ¢ and m in this
equation both have a common divisor greater than 1, then 1 must also have this same common divisor, since
1 = ax — tm. This is absurd, since the only positive divisor of 1 is 1. Therefore no such z exists.

10. We know from Exercise 6 that 9 is an inverse of 2 modulo 17. Therefore if we multiply both sides of this
equation by 9 we will get £ =9-7 (mod 17). Since 63 mod 17 = 12, the solutions are all integers congruent
to 12 modulo 17, such as 12, 29, and —5. We can check, for example, that 2-12 =24 =7 (mod 17). This
answer can also be stated as all integers of the form 12 + 17k for k € Z.

12. In each case we multiply both sides of the congruence by the inverse found in Exercise 6 and simplify. Our
answers are not unique, of course—anything in the same congruence class works just as well.
a) We found that 55 is an inverse of 34 modulo 89, so x = 7755 = 4235 = 52 (mod 89). Check:
34-52=1768 = 77 (mod 89).
b) We found that 89 is an inverse of 144 modulo 233, so x = 4 -89 = 356 = 123 (mod 233). Check:
144-123 = 17712 = 4 (mod 233).
¢) We found that —5 is an inverse of 200 modulo 1001, so x = 13- (=5) = —65 = 936 (mod 1001). (We
could also leave the answer as —65.) Check: 200 - 936 = 187200 = 13 (mod 1001).
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Adding 12 to both sides of the congruence yields 1222 + 25z 412 = 0 (mod 11). (We chose something to add
that would make the left-hand side easily factorable and the right-hand side equal to 0.) This is equivalent
to (3z +4)(4z + 3) = 0 (mod 11). Because there are no non-zero divisors of 0 modulo 11, this congruence
is true if and only if either 3z +4 = 0 (mod 11) or 4o +3 = 0 (mod 11). (This would have been more
complicated modulo a non-prime modulus, because there would be nonzero divisors of 0.) We solve these
linear congruences by inspection (guess and check) or using the Euclidean algorithm to find inverses of 3 and
4 (or using computer algebra software), to yield = 6 or x = 2. In fact, typing “msolve(12°2+25x=10,11)"
into Maple produces this solution set.

a) We can find inverses using the technique shown in Example 2. With a little work (or trial and error, which
is actually faster in this case), we find that 2-6 =1 (mod 11), 3:4 =1 (mod 11), 5-9 =1 (mod 11), and
7-8 =1 (mod 11). Actually, the problem does not ask us to show these pairs explicitly, only to show that
they exist. The general argument given in Exercise 18 shows this.

b) In this specific case we can compute 10! =1-2-3-4-5-6-7-8-9-10=1-(2-6)-(3-4)-(5-9)-(7-8)-10 =
1-1-1-1-10=10= —1 (mod 11). Alternatively, we can use the proof in Exercise 18.

a) Every positive integer less than p has an inverse modulo p, and by Exercise 7 this inverse is unique among
positive integers less than p. This follows from Theorem 1, since every number less than p must be relatively
prime to p (because p is prime it has no smaller divisors). We can group each positive integer less than p
with its inverse. The only issue is whether some numbers are their own inverses, in which case this grouping
does not produce pairs. By Exercise 17 only 1 and —1 (which is the same as p — 1 modulo p) are their own
inverses. Therefore all the other positive integers less than p can be grouped into pairs consisting of inverses
of each other, and there are clearly (p —1—2)/2 = (p — 3)/2 such pairs.

b) When we compute (p — 1)!, we can write the product by grouping the pairs of inverses modulo p. Each
such pair produces the product 1 modulo p, so modulo p the entire product is the same as the product of
the only unpaired elements, namely 1-(p—1) = p— 1. Since this equals —1 modulo p, our proof is complete.
c¢) By the contrapositive of what we have just proved, we can conclude that if (n —1)! £ —1 (mod n) then n

is not prime.

Since 3, 4, and 5 are pairwise relatively prime, we can use the Chinese remainder theorem. The answer will
be unique modulo 3 -4 -5 = 60. Using the notation in the text, we have a1 =2, m; =3, as =1, mg =4,
a3 =3, m3 =5, m=60, M; =60/3 =20, My =60/4 =15, M3 = 60/5 = 12. Then we need to find
inverses y; of M; modulo m; for ¢ = 1,2,3. This can be done by inspection (trial and error), since the moduli
here are so small, or systematically using the Euclidean algorithm (as in Example 2); we find that y; = 2,
y2 = 3, and y3 = 3. Thus our solution is  =2-20-2+1-15-3+3-12-3 = 233 = 53 (mod 60). So the
solutions are all integers of the form 53 + 60k, where k is an integer.

By definition, the first congruence can be written as x = 6t + 3 where ¢ is an integer. Substituting this
expression for z into the second congruence tells us that 6t + 3 = 4 (mod 7), which can easily be solved
to show that ¢ = 6 (mod 7). From this we can write ¢ = 7u + 6 for some integer u. Thus x = 6t + 3 =
6(7u + 6) + 3 = 42u + 39. Thus our answer is all numbers congruent to 39 modulo 42. We check our answer
by confirming that 39 = 3 (mod 6) and 39 =4 (mod 7).

By definition, the first congruence can be written as x = 2t + 1 where ¢ is an integer. Substituting this
expression for z into the second congruence tells us that 2t + 1 = 2 (mod 3), which can easily be solved
to show that ¢ = 2 (mod 3). From this we can write ¢ = 3u + 2 for some integer u. Thus x = 2t + 1 =
2(3u+2)+1=6u+5. Next we have 6u+5 = 3 (mod 5), which we solve to get © =3 (mod 5), so u = 5v+3.
Thus x = 6(5v + 3) +5 = 30v + 23. For the last congruence we have 30v 4+ 23 = 4 (mod 11); solving this is a
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little harder but trial and error or the applying the methods of Example 2 to get an inverse and then Example 3
shows that v = 10 (mod 11). Therefore 2 = 30(11w + 10) + 23 = 330w + 323. So our solution is all integers
congruent to 323 modulo 330. We check our answer by confirming that 323 = 1 (mod 2), 323 = 2 (mod 3),
323 =3 (mod 5), and 323 =4 (mod 11).

We cannot apply the Chinese remainder theorem directly, since the moduli are not pairwise relatively prime.
However, we can, using the Chinese remainder theorem, translate these congruences into a set of congruences
that together are equivalent to the given congruence. Since we want x = 5 (mod 6), we must have z =5 =
1 (mod 2) and x = 5 = 2 (mod 3). Similarly, from the second congruence we must have © = 1 (mod 2)
and x = 3 (mod 5); and from the third congruence we must have x = 2 (mod 3) and =z = 3 (mod 5).
Since these six statements are consistent, we see that our system is equivalent to the system z =1 (mod 2),
x =2 (mod 3), x =3 (mod 5). These can be solved using the Chinese remainder theorem (see Example 5) to
yield z = 23 (mod 30). Therefore the solutions are all integers of the form 23 + 30k, where k is an integer.

This is just a restatement of the Chinese remainder theorem. Given any such a we can certainly compute
a mod my, a mod ms, ..., a mod m, to represent it. The Chinese remainder theorem says that there is
only one nonnegative integer less than m yielding each n-tuple, so the representation is unique.

We follow the hint and suppose that there are two solutions to the set of congruences. Thus suppose that
x = a; (mod m;) and y = a; (mod m;) for each i. We want to show that these solutions are the same
modulo m; this will guarantee that there is only one nonnegative solution less than m. The assumption
certainly implies that = y (mod m;) for each i. But then Exercise 29 tells us that z = y (mod m), as
desired.

We are asked to solve z = 0 (mod 5) and z = 1 (mod 3). We know from the Chinese remainder theorem
that there is a unique answer modulo 15. It is probably quickest just to look for it by dividing each multiple
of 5 by 3, and we see immediately that = = 10 satisfies the condition. Thus the solutions are all integers
congruent to 10 modulo 15. If the numbers involved were larger, then we could use the technique implicit in
the proof of Theorem 2 (see Exercise 53).

Fermat’s little theorem tells us that 23%° = 1 (mod 41). Therefore 231002 = (2340)25.232 = 12°.529 = 529 =
37 (mod 41).

By Exercise 35, an inverse of 5 modulo 41 is 539

. We can stop there, but presumably we’d like a simpler answer.
This could be calculated using modular exponentiation (or, from a practical point of view, with computer

algebra software). The simplest form of this is 33, and it is easy to check that 5-33 =165 =1 (mod 41).

a) By Fermat’s little theorem we know that 3* = 1 (mod 5); therefore 33%° = (3%)7 = 17 = 1 (mod 5),
and so 3392 = 32.3%300 = 9.1 =9 (mod 5), so 332 mod 5 = 4. Similarly, 3 = 1 (mod 7); therefore
3300 = (36)50 =1 (mod 5), and so 32°2 = 32.33%0 =9 (mod 7), so 33°2 mod 7 = 2. Finally, 3% = 1 (mod 11);
therefore 3390 = (310)3% =1 (mod 11), and so 3202 = 32 .33 =9 (mod 11), so 3392 mod 11 = 9.

b) Since 332 is congruent to 9 modulo 5, 7, and 11, it is also congruent to 9 modulo 385. (This was a
particularly trivial application of the Chinese remainder theorem.)

Note that the prime factorization of 42 is 2-3-7. So it suffices to show that 2|n” —n, 3|n” — n, and

7|n” —n. The first is trivial (n” —n is either “odd minus odd” or“even minus even,” both of which are even),
7 23 . —n=

and each of the other two follows immediately from Fermat’s little theorem, because n’ —n = (n

1-n—n=0(mod 3) and n” —n=n—-n=0 (mod 7).
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To decide whether 2! —1 = 8191 is prime, we need only look for a prime factor not exceeding /8191 == 90.5.
By Exercise 41 every such prime divisor must be of the form 26k + 1. The only candidates are therefore 53
and 79. We easily check that neither is a divisor, and so we conclude that 8191 is prime.

We can take the same approach for 223 — 1 = 8,388,607, but we might worry that there will be far too
many potential divisors to test, since we must go as far as 2896. By Exercise 41 every prime divisor of 223 —1
must be of the form 46k+ 1. The first candidate divisor is therefore 47. Luckily 47 | 8,388,607, so we conclude
that this Mersenne number is not prime.

Let xp = p(n=1)/2" = bQS%t7 for k=0,1,2,...,s. Because n is prime and n/b, Fermat’s little theorem tells
us that o = b"~! =1 (mod n). By Exercise 17, because z? = (b(*~1/2)2 = 5 = 1 (mod n), either z; =
—1 (mod n) or 1 =1 (mod n). If x; =1 (mod n), because 3 = x1 = 1 (mod n), either x5 = —1 (mod n)
or o =1 (mod n). In general, if we have found that xg =21 =22 = = 2, = 1 (mod n), with k < s, then,
because 7, =z = 1 (mod n), we know that either z;41 = —1 (mod n) or zx41 =1 (mod n). Continuing
this procedure for k = 1,2,...,s, we find that either z, = ' = 1 (mod n), or x;, = —1 (mod n) for some

integer k with 0 < k <s. Hence, n passes Miller’s test for the base b.

This follows from Exercise 49, taking m = 1. Alternatively, we can argue directly as follows. Factor 1729 =
7-13-19. We must show that this number meets the definition of Carmichael number, namely that 5728 =
1 (mod 1729) for all b relatively prime to 1729. Note that if ged(b,1729) = 1, then ged(b,7) = ged(d,13) =
ged(b,19) = 1. Using Fermat’s little theorem we find that % = 1 (mod 7), b'? = 1 (mod 13), and b8 =
1 (mod 19). It follows that b172® = (b5)2%8 =1 (mod 7), b1728 = (h'2)14 =1 (mod 13), and b'78 = (p!8)% =
1 (mod 19). By Exercise 29 (or the Chinese remainder theorem) it follows that »'7?® = 1 (mod 1729), as
desired.

Let b be a positive integer with ged(b,n) = 1. The ged(b,p;) =1 for j =1,2,...,k, and hence, by Fermat’s
little theorem, »?~1 = 1 (mod p;j) for j =1,2,...,k. Because p; — 1|n — 1, there are integers t; with
ti(pj — 1) = n — 1. Hence for each j we know that b"~! = b(Pi =Dt = (bPs=V)% =1 (mod p;). Therefore
b"~1 =1 (mod n), as desired.

We could use the technique shown in the proof of Theorem 2 to solve each part, or use the approach in
our solution to Exercise 32, but since there are so many to do here, it is simpler just to write out all the
representations of 0 through 27 and find those given in each part. This task is easily done, since the pattern

is clear:
0=(0,0) 7=(3,0) 14 =(2,0) 21 = (1,0)
1=(1,1) 8 =(0,1) 15=(3,1) 22 =(2,1)
2=(2,2) 9=(1,2) 16 = (0,2) 23 =(3,2)
3=(3,3) 10 =(2,3) 17=(1,3) 24 = (0,3)
4=1(0,4) 11=(3,4) 18 =(2,4) 25 = (1,4)
5=(1,5) 12 =(0,5) 19 =(3,5) 26 = (2,5)
6= (2,6) 13 =(1,6) 20 = (0,6) 27 = (3,6)

Now we can read off the answers.
a)0 b)2l  ¢)1 d)22 e)2 )24 g)14  h)19 i) 27

To add 4 and 7 we first find that 4 is represented by (1,4) and that 7 is represented by (1,2). Adding
coordinate-wise, we see that the sum is represented by (1+1,442) = (2,6) = (2,1); we are working modulo 5
in the second coordinate. Then we find (2,1) in the table and see that it represents 11. Therefore we conclude
that 4 +7 = 11. Note that we can only compute answers less than 3 -5 = 15 using this method.
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54. We calculate 2 mod 19 for i = 1,2,...,18 and see that we get 18 different values. The values are 2, 4, 8,
16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1.

56. The proof is the same as the proof for the corresponding identity for the real numbers. To show that log,.(ab) =
log, a + log,. b (mod p — 1), it suffices (by definition) to show that r°8-*l°8:® = g (mod p — 1). But
Tlogr a+log, b _ 7,.logr a ., rlogrb =a-b (mod p— 1)

58. We square the first five positive integers and reduce modulo 11, obtaining 1, 4, 9, 5, 3. The squares of the
next five are necessarily the same set of numbers modulo 11, since (—x)? = 22, so we are done. Therefore the
quadratic residues modulo 11 are all integers congruent to 1, 3, 4, 5, or 9 modulo 11.

60. Consider the list 2 mod p as x runs from 1 to p — 1 inclusive. This gives us p — 1 numbers between 1 and
p — 1 inclusive. By Exercise 59 every a that appears in this list appears exactly twice. Therefore exactly half
of the p — 1 numbers must appear in the list (i.e., be quadratic residues).

62. First assume that (%) = 1. Then the congruence 2> = a (mod p) has a solution, say # = s. By Fermat’s

little theorem a(P~1/2 = (s2)(P=1)/2 = sp=1 = 1 (mod p), as desired. Next consider the case (%) = —1.

2

Then the congruence z* = a (mod p) has no solution. Let i be an integer between 1 and p — 1, inclusive.

By Theorem 1, ¢ has an inverse i modulo p, and therefore there is an integer j, namely i’a, such that
ij = a (mod p). Furthermore, since the congruence x> = a (mod p) has no solution, j # i. Thus we can
group the integers from 1 to p — 1 into (p — 1)/2 pairs each with the product a. Multiplying these pairs
together, we find that (p — 1)! = a»~1/2 (mod p). But now Wilson’s theorem (see Exercise 18) tells us that

this latter value is —1, again as desired.

64. If p=1 (mod 4), then (p—1)/2 is even, so the right-hand side of the equivalence in Exercise 62 with a = —1
is +1, that is, —1 is a quadratic residue. Conversely, if p = 3 (mod 4), then (p—1)/2 is odd, so the right-hand
side of the equivalence in Exercise 62 with a = —1 is —1, that is, —1 is not a quadratic residue.

66. We follow the hint. Working modulo 3, we want to solve 2 = 16 = 1. It is easy to see that there are
exactly two solutions modulo 3, namely z = 1 and =z = 2. Similarly we find the solutions x =1 and z = 4
to 22 = 16 = 1 (mod 5); and the solutions z = 3 and x = 4 to 2> = 16 = 2 (mod 7). Therefore we
want to find values of # modulo 3-5-7 = 105 such that x = 1 or 2 (mod 3), x = 1 or 4 (mod 5) and
x =3 or 4 (mod 7). We can do this by applying the Chinese remainder theorem (as in Example 5) eight
times, for the eight combinations of these values. For example, to solve z = 1 (mod 3), © = 1 (mod 5),
and z = 3 (mod 7), we find that m = 105, M; = 35, My =21, M3 =15, y1 =2, yo =1, y3 = 1, so
2=1-35-241-21-1+3-15-1 =136 = 31 (mod 105). Doing the similar calculation with the other seven
possibilities yields the other solutions modulo 105: * =4, ¢ =11, © =46, * = 59, * = 74, x = 94 and
z = 101.
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In each case we need to compute k¥ mod 101 by dividing by 101 and finding the remainders. This can be
done with a calculator that keeps 13 digits of accuracy internally. Just divide the number by 101, subtract
off the integer part of the answer, and multiply the fraction that remains by 101. The result will be almost
exactly an integer, and that integer is the answer.

a) 58 b) 60 c) 52 d) 3

. We compute as follows: h(ky) = 1524; h(ks) = 578; h(ks) = 578, which collides, h(ks,1) = 2505, so ks is

assigned memory location 2505; h(ks) = 2376; h(ks) = 3960; h(ks) = 1526; h(k;) = 2854; h(ks) = 1526,
which collides, h(ks,1) = 4927, so kg is assigned memory location 4927; h(kg) = 3960, which collides,
h(kg,1) = 6100 = 1131 (mod 4969), so kg is assigned memory location 1131; h(kio) = 3960, which collides,
h(k10,1) = 4702, so kyp is assigned memory location 4702. Notice that we never had to go above ¢ = 1 in
the probing sequence.

. We just calculate using the formula. We are given zp = 3. Then z; = (4-3+ 1) mod 7 = 13 mod 7 = 6;

22=(4-6+1)mod 7=25mod 7=4; z3=(4-44+1) mod 7= 17 mod 7 = 3. At this point the sequence
must continue to repeat 3, 6, 4, 3, 6, 4, ... forever.

. We assume that the input to this procedure consists of a modulus (m > 2), a multiplier (a), an increment

(¢), a seed (xg), and the number (n) of pseudorandom numbers desired. The output will be the sequence
{z:}.
procedure pseudorandom(m, a, ¢, xg,n : nonnegative integers)
for i:=1ton
x; := (az;—1 + ¢) mod m

We follow the instructions. Because 37922 = 14379264, the middle four digits are 3792, which is the number
we started with. So this sequence is not random at all—it’s constant! Similarly, 29162 = 08503056, 50302 =
25300900, 30092 = 09054081, and 05402 = 00291600, which gives us back the number we started with, so
this sequence degenerates into a repeating sequence with period 4.

We are told to apply the formula x,.; = 22 mod 11, starting with x9 = 3. Thus z; = 3% mod 11 = 9,
23 =92mod 11 =4, 4 =4°> mod 11 = 5, 25 = 52 mod 11 = 3, and we are back where we started. The
sequence generated here is 3,9,4,5,3,9,4,5,....

If a string contains an odd number of errors, then the number of 1’s in the string with its check bit will differ
by an odd number from what it should be, which means it will be an odd number, rather than the expected
even number, and we will know that there is an error. If the string contains an even number of errors, then
the number of 1’s in the string with its check bit will differ by an even number from what it should be, which
means it will be an even number, as expected, and we will not know that anything is wrong.

We know that 1-04+2-3+3-244-14+5-54+46-0+7-04+8-Q+9-1+10-8 =0 (mod 11). This
simplifies to 130 + 8@ = 0 (mod 11). We subtract 130 from both sides and simplify to 8Q = 2 (mod 11),
since —130 = —12-11+ 2. It is now a simple matter to use trial and error (or the methods of Section 4.4) to
find that @ = 3 (since 24 =2 (mod 11)).

In each case we just have to compute x; + x2 + - -+ + x19 mod 9 The easiest way to do this by hand is to

)

“cast out nines,” i.e., throw away sums of 9 as we come to them.

a) T+5+5+5+6+1+8+8+7+3mod9=1 b)5 ¢)2 d)O0
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In each case we want to solve the equation z1 + 22 + -+ + 219 = 211 (mod 9) for the missing digit, which is
easily done by inspection (one can throw away 9’s).

a) Q+1424+24+3+1+3+94+74+8=4(mod9)=Q=4(mod9)=Q=4

b) 6+74+0+2+14+24+0+Q+9+8=8 (mod 9) = Q+8=8 (mod 9) = Q =0 (mod 9). There are two
single-digit numbers ) that makes this true: Q =0 and @ = 9, so it is impossible to know for sure what the
smudged digit was.

c) 24+7+Q+44+14+0+0+74+7+3=4(mod 9) = Q+4=4 (mod 9) = Q =0 (mod 9). There are two
single-digit numbers @) that makes this true: @ =0 and @ =9, so it is impossible to know for sure what the
smudged digit was.

d) 2414+3+24+74+9404+3+2+Q=1(mod9)=Q+2=1(mod9)=Q=8(mod 9)=Q =238

If one digit is changed to a value not congruent to it modulo 9, then the modular equivalence implied by
the equation in the preamble will no longer hold. Therefore all single digit errors are detected except for the
substitution of a 9 for a 0 or vice versa.

In each case we want to solve the equation 3z +xo +3x3+ x4+ -+ 3211 + 212 = 0 (mod 10) for x5, which
can be done mentally, because we need to keep track of only the last digit.
a)3-7+3+3-24+3+3-2+14+3-84+4+3-44+34+3-44212=0 (mod 10) = z12=>5

b) 3-6+3+3-64+2+3-3+94+3-941+3-3+4+3-6+2x12=0 (mod 10) = 15 =2

c) 3-0+4+3-54+84+3-7+3+3-24043-7+2+4+3-0+ 212 =0 (mod 10) = 212 =0

d) 3-9+3+3-7+6+3-4+3+3-24+3+3-3+4+3-14+212=0 (mod 10) = z12=3

Yes. Any single digit error will change, say, = to y, and one side of the congruence given in Example 5 will
differ by either z —y or 3(x —y) from its true value. Because  —y # 0 and 3(z —y) # 0 (mod 10) (since 3
is relatively prime to 10), the congruence will no longer hold.

In each case we need to compute the remainder of the given 14-digit number upon division by 7.
a) 10237424413392 mod 7 =1 b) 00032781811234 mod 7 =4
c) 00611232134231 mod 7 =5 d) 00193222543435 mod 7 =5

A change in the digit in the n'" column from the right in the 14-digit number formed by the first 14 digits of
the airline ticket identification number (with n = 0 corresponding to the units digit), say from z to y, will
cause this 14-digit number to differ from its correct value by (z — y)10™. If this equals 0 modulo 7, then the
error will not be detected. Because 7 and 10 are relatively prime, that will happen if and only if | —y| = 7;
therefore we can detect errors except 0 «» 7, 1 < 8, 2 «+» 9. The same reasoning applies to the check digit
(although of course 7, 8, and 9 are invalid digits for the check digit anyway).

It follows from the preamble that we need to compute 3d; + 4ds + 5d3 + 6d4 + 7ds + 8dg + 9d7 mod 11 in
order to determine the check digit dg.

a)3:-1+44-54+5-7+6-04+7-8+8-6+9-8mod 11 =3

b) 3-1+4-54+5-54+6-3+7-7+8-3+9-4mod 11 =10, so the check digit is X.
c)3-1+44-04+5-846-947-7+8-04+9-8mod 11 =9
d)3-1+4-345-84+6-3+7-84+8-1+9-1mod 11 =3

Yes. Any single digit error will change, say, x to y, and one side of the congruence given in the preamble will
differ by a(x —y), for some a € {1,3,4,5,6,7,8,9}, from its true value. Each of those values of a is relatively
prime to 11, so a(z —y) Z 0 (mod 11) and the congruence will no longer hold.
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These are straightforward arithmetical calculations, as in Exercise 1.
a) WXST TSPPYXMSR b) NOJK KJHHPODJI c) QHAR RABBYHCAJ

. We just need to “subtract 3” from each letter. For example, E goes down to B, and B goes down to Y.

a) BLUE JEANS b) TEST TODAY c) EAT DIM SUM

. Under these assumptions we guess that the plaintext E became the ciphertext X. Since the number for E is 4

and the number for X is 23, k =23 —4 = 19.

. Because of the word JVVU we guess that the ciphertext V might be the plaintext E or O. If it is the former,

then the shift would have to be 21 — 4 = 17. Applying the inverse of that shift to the message yields MEN
LOVE TO WONDER, AND THAT IS THE SEED OF SCIENCE.

If the enciphering function is f(p) = (p+k) mod 26, then the deciphering functionis f~!(p) = (p—k) mod 26.
Thus we seek a k such that k¥ = —k (mod 26), and the unique solution is k = 13.

If @ is the inverse of @ modulo 26, then the decryption function for the encryption function ¢ = (ap+b) mod 26
is p=1a(c—b) mod 26 = (ac—ab) mod 26. Clearly two different pairs (a,b) cannot give the same encryption
function, so we need to solve the system of congruences @ = a (mod 26) and b = —ab (mod 26). Only 1 and
—1 (which is the same as 25) are their own multiplicative inverses modulo 26 (this can be verified by asking
a computer algebra system to compute all the inverses), so there are two cases. If a = 1, then the second
congruence becomes b = —b (mod 26), whose solutions are b = 0 and b = 13. This says that the identity
function ¢ = p mod 26 satisfies the given condition (although that was obvious and not very interesting),
and so does ¢ = (p+ 13) mod 26. If a = —1, then the second congruence becomes b = b (mod 26), which is
satisfied by all values of b. Therefore all encryption functions of the form ¢ = (—p + b) mod 26 also have
themselves as the corresponding decryption function. The answer to the question phrased in terms of pairs is
(1,0), (1,13), and (—1,b) (or, equivalently, (25,b)) for all b.

Within each block of five letters (GRIZZ LYBEA RSXXX) we send the first letter to the third letter, the
second letter to the fifth letter, and so on. So the encrypted message is IZGZR BELAY XXRXS.

One method, using technology, would be to try all possibilities. For n = 2,3,4,..., have the computer go
through all n! permutations of {1,2,3,...,n} and for each one permute blocks of n letters of the ciphertext,
printing out the resulting plaintext on the computer screen. You, a human, can look at them and figure out
which ones make sense as a message.

The plaintext string in numbers is 18-13-14-22-5-0-11-11. We add the string for the key repeated twice,
1-11-20-4-1-11-20-4, to obtain the string 19-24-8-0-6-11-5-15, which in letters is TYIAGLFP.

A cryptosystem is a 5-tuple (P,C, K, E, D), as explained in Definition 1. We follow the discussion of Example 7.
As there, P and C are strings of elements of Zsg. The set of keys is the set of strings over Zyg as well. The set
of encryption functions is the set of functions described in the preamble to Exercise 18. The set of decryption
functions is the same, because decrypting with the string a-b-c-... is the same as encrypting with the string

(=a)-(=b)-(=¢)-...

Suppose the length of the key string is I. We can apply the frequency method, explained in Example 5 and
the preceding discussion, to the letters in positions 1, 1+ 1, 1+ 2, ... to determine the first letter of the
key string (viewed as a number from 0 to 25), then do the same for the second letter, and so on up to the Jth
letter.
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Translating the letters into numbers we have 0019 1900 0210. Thus we need to compute C = P'3 mod 2537
for P =19, P =1900, and P = 210. The results of these calculations, done by fast modular multiplication
or a computer algebra system are 2299, 1317, and 2117, respectively. Thus the encrypted message is 2299
1317 2117.

First we find d, the inverse of e = 17 modulo 52-60. A computer algebra system tells us that d = 2753. Next
we have the CAS compute ¢? mod n for each of the four given numbers: 318527° mod 3233 = 1816 (which
are the letters SQ), 2038275 mod 3233 = 2008 (which are the letters UI), 24602753 mod 3233 = 1717 (which
are the letters RR), and 2550?73 mod 3233 = 0411 (which are the letters EL). The message is SQUIRREL.

If M =0 (mod n), then C = M® =0 (mod n) and so C =0 = M (mod n). Otherwise, gcd(M,p) = p and
ged(M,q) =1, or ged(M,p) =1 and ged(M, q) = q. By symmetry it suffices to consider the first case, where
M =0 (mod p). We have C? = (M¢)? = (0°) = 0 = M (mod p). As in the case considered in the text,
de =1+ k(p—1)(g—1) for some integer k, so

04 = Mo = pMitke=Da=D = propp(@HRPD = A1 = M (mod )

by Fermat’s little theorem. Thus by the Chinese remainder theorem, C¢ = M (mod pq).

We follow the steps given in the text, with p = 101, a = 2, k; = 7, and ky = 9. Using Maple, we verify
that 2 is a primitive root modulo 101, by noticing that 2* as k runs from 0 to 99 produce distinct values
(and of course 2'° mod 101 = 1). We find that 27 mod 101 = 27. So in Step (2), Alice sends 27 to Bob.
Similarly, in Step (3), Bob sends 2° mod 101 = 7 to Alice. In Step (4) Alice computes 77 mod 101 = 90,
and in Step (5) Bob computes 27° mod 101 = 90. These are the same, of course, and thus 90 is the shared
key.

When broken into blocks and translated into numbers the message is 0120 2413 1422. Alice applies her
decryption transformation D(sg67,7)(2) = 218 mod 2867 to each block, which we compute with a CAS to
give 1665 1728 2123. Next she applies Bob’s encryption transformation F27.21)(2) = 22! mod 3127 to each
block, which we compute with a CAS to give 2806 1327 0412. She sends that to Bob. Only Bob can read it,
which he does by first applying his decryption transformation D(312721)() = 149 mod 3127 to each block,
recovering 1665 1728 2123, and then applying Alice’s encryption transformation Eoge7,7)(2) = 27 mod 2867
to each of these blocks, recovering the original 0120 2413 1422, BUY NOW.

SUPPLEMENTARY EXERCISES FOR CHAPTER 4

2.

a) Each week consists of seven days. Therefore to find how many (whole) weeks there are in n days, we need
to see how many 7’s there are in n. That is exactly what n div 7 tells us.
b) Each day consists of 24 hours. Therefore to find how many (whole) days there are in n hours, we need to
see how many 24’s there are in n. That is exactly what n div 24 tells us.

1
. Let ¢ = [g — —-‘ and r = a—dq. Then we have forced a = dg+r, so it remains to prove that —d/2 < r < d/2.

2

1 d d
Now since ¢ —1 < % ~3 < ¢, we have (by multiplying through by d and adding d/2) dq — 3 <a<dq+ 2

d d
SO 5 <a—dg< 3 as desired.

. By Exercise 38 in Section 4.1, the square of an integer is congruent to either 0 or 1 modulo 4, where obviously

the odd integers have squares congruent to 1 modulo 4. The sum of two of these is therefore congruent to 2
modulo 4, so cannot be a square.
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. If there were integer solutions to this equation, then by definition we would have z

2 =2 (mod 5). However we

easily compute (as in Exercise 40 in Section 4.1) that the square of an integer of the form 5k is congruent to 0
modulo 5; the square of an integer of the form 5k + 1 is congruent to 1 modulo 5; the square of an integer
of the form 5k + 2 is congruent to 4 modulo 5; the square of an integer of the form 5k + 3 is congruent to 4
modulo 5; and the square of an integer of the form 5k +4 is congruent to 1 modulo 5. This is a contradiction,
so no solutions exist.

The number 3 plays the same role in base two that the number 11 plays in base ten (essentially because
(11)2 = 3). The divisibility test for 11 in base ten is that d,d,—1 ...d2d1dy is divisible by 11 if and only
if the alternating sum dy — dy + do — -+ - + (—1)"d,, is divisible by 11. The corresponding rule here is that
(dndp—1 . ..d2d1dg)s is divisible by 3 if and only if the alternating sum do —dy +ds —- - -+ (—1)"d,, is divisible
by 3. For example, 27 = (11011)5 is divisible by 3 because 1 —1+0—1+1 =0 is divisible by 3. The proof
follows from the fact that 2" —1 =0 (mod 3) if n is even and 2" +1 =0 (mod 3) if n is odd. Thus we have

(dndn—l R d2d1d0)2 =dy + 2d, + 22d2 + 23d3 +..-2"d,
=do+ (3ky — 1)d1 + (3ka + 1)da + (3ks — 1)ds + - - + Bk, + (—1)™")d,,
=[do—di+dy— -+ (=1)"d,] + [3(k1dy + kody + ksds + - - - + kndy)]

for integers k1 =1, ko =1, k3 =3, ks =5, ks = 11, .... The second bracketed expression is always divisible
by 3, so the entire number is divisible by 3 if and only if the alternating sum is.

As we see from Exercise 11, at most n questions (guesses) are needed. Furthermore, at least this many yes/no
questions are needed as well, since if we asked fewer questions, then by the pigeonhole principle, two numbers
would produce the same set of answers and we would be unable to guess the number accurately. Thus the
complexity is n questions. (The case n = 0 is not included, since in that case no questions are needed.) We
are assuming throughout this exercise and the previous one that the inclusive sense of “between” was intended.

First note that since both ¢ and b must be greater than 1, the sequences |ka] and |kb] do not list any
positive integer twice. The issue is whether any positive integer is listed in both sequences, or whether some
positive integer is omitted altogether. Let N(x,n) denote the number of positive integers in the set { |kz] |
k is a positive integer } that are less than or equal to n. Then it is enough to prove that N(a,n)+N(b,n) =n
for all positive integers n. (That way no positive integer could be left out or appear twice when we consider
all the numbers |ka| and |kb|.) Now N(a,n) is the number of positive integers k for which |ka] < n,
which is just the number of positive integers k for which ka < n+ 1, since a is irrational, and this is clearly
[(n+1)/a]. We have a similar result for b. Let f(z) denote the fractional part of = (i.e., f(z) =z — |z]).
Then we have

=22 [ (22 2 ()

a a

But the sum of the first and third terms of the right-hand side here is n + 1, since we are given that
(1/a) + (1/b) = 1. The second and fourth terms are each fractions strictly between 0 and 1, and the entire
expression is an integer, so they must sum to 1. Therefore the displayed value is n +1 — 1 = n, as desired.

The first few of these are Q1 =2, Q2 =3, Q3 =7, Q4 = 25, and Q5 = 121. Although the first three are
prime, the next two are not. In fact, a CAS tells us that Q4 through Qo = 3,628,801 = 11 - 329,891 are all
not prime. The only other primes among the first 100 are Q11, Q27, @37, Q41, @73, and Q77.

We can give a nice proof by contraposition here, by showing that if n is not prime, then the sum of its divisors
is not n + 1. There are two cases. If n = 1, then the sum of the divisors is 1 # 1 + 1. Otherwise n is
composite, so can be written as n = ab, where both a and b are divisors of n different from 1 and from n
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(although it might happen that a = b). Then n has at least the three distinct divisors 1, a, and n, and their
sum is clearly not equal to n + 1. This completes the proof by contraposition. One should also observe that
the converse of this statement is also true: if n is prime, then the sum of its divisors is n + 1 (since its only
divisors are 1 and itself).

20. This question is asking for the smallest pair of primes that differ by 6. Looking at a table of prime numbers
tells us that these are 23 and 29, so the five smallest consecutive composite integers are 24, 25, 26, 27, and
28.

22. Using a computer algebra system, such as Maple with its ability to loop and its built-in primeness tester, is
the only reasonable way to solve this problem. The answer is 7, 37, 67, 97, 127, 157 (i.e., the common
difference is 30). The analogous question for seven primes has common difference 150. A search for a string
of eight primes in arithmetic progression found one with starting value 17 and common difference 6930.

24. There is one 0 at the end of this number for every factor of 2 in all of the numbers from 1 to 100. We count
them as follows. All the even numbers have a factor of 2, and there are 100/2 = 50 of these. All the multiples
of 4 have another factor of 2, and there are 100/4 = 25 of these. All the multiples of 8 have another factor
of 2, and there are [100/8| = 12 of these, and so on. Thus the answer is 50 + 25 + 12+ 6+ 3+ 1 = 97.

26. We need to divide successively by 233, 144, 89, 55, 34, 21, 13, 8, 5, 3, 2, and 1, a total of 12 divisions.

28. a) The first statement is clear. For the second, if @ and b are both even, then certainly 2 is a factor of their
greatest common divisor, and the complementary factor must be the greatest common divisor of the numbers
obtained by dividing out this 2. For the third statement, if a is even and b is odd, then the factor of 2 in
a will not appear in the greatest common divisor, so we can ignore it. Finally, the last statement follows
from Lemma 1 in Section 4.3, taking ¢ = 1 (despite the notation, nothing in Lemma 1 required ¢ to be the
quotient).

b) All the steps involved in implementing part (a) as an algorithm require only comparisons, subtractions,
and divisions of even numbers by 2. Since division by 2 is a shift of one bit to the right, only the operations
mentioned here are used. (Note that the algorithm needs two more reductions: if a is odd and b is even, then
ged(a, b) = ged(a, b/2), and if a < b, then interchange a and b.)
¢) We show the operation of the algorithm as a string of equalities; each equation is one step.
gcd (1202, 4848) = ged(4848,1202) = 2 ged(2424,601) = 2 ged(1212,601) = 2 ged(606, 601)
= 2gcd(303,601) = 2gcd(601,303) = 2gcd (298, 303) = 2 ged(303, 298)

= 2gcd(303,149) = 2 ged(154, 149) = 2 ged(77,149) = 2 ged (149, 77)

= 2gcd(72,77) = 2ged(77,72) = 2ged(77,36) = 2 ged(77,18)

= 2gcd(77,9) = 2gcd(68,9) = 2gcd(34,9) = 2gcd(17,9)

= 2gcd(8,9) = 2gcd(9,8) = 2ged(9,4) = 2ged(9, 2)

=2gcd(9,1) = 2gcd(8 1) =2ged(4,1) = 2gcd(2,1)

=2gcd(1,1) =

30. Let’s try the strategy used in the proof of Theorem 3 in Section 4.3. Suppose that pi, p2, ..., p, are the
only primes of the form 3k + 1. Notice that the product of primes of this form is again of this form, because
(3k1+1)(8ka+ 1) = 9k1ko + 3k1 + 3ka + 1 = 3(3k1ka + k1 + k2) + 1. We could try looking at 3pip2---pn+1,
which is again of this form. By the fundamental theorem of arithmetic, it has prime factors, and clearly no
p; is a factor. Unfortunately, we cannot be guaranteed that any of its prime factors are of the form 3k + 1,
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because the product of two primes not of this form, namely of the form 3k 4 2, is of the form 3k + 1; indeed,
(3k1 4+ 2)(3ka + 2) = Yk1ka + 6ky + 6ka + 4 = 3(3k1ka + 2k1 + 2ko + 1) + 1. Thus the proof breaks down at
this point.

We give a proof by contradiction. Suppose that p > /n, where p is the smallest prime factor of n, but n/p
is not prime and not equal to 1. Then p* > n, so p? > n/p. By our assumption, n/p = a-b, where a,b > 1.
Because a - b < p?, at least one of a and b is less than p; assume without loss of generality that it is a.
Then a is a divisor of n smaller than p, so any prime factor of @ is a prime divisor of n smaller than p, in
contradiction to our assumptions.

We need to arrange that every pair of the four numbers has a factor in common. There are six such pairs, so
let us use the first six prime numbers as the common factors. Call the numbers a, b, ¢, and d. We will give
a and b a common factor of 2; a and ¢ a common factor of 3; a and d a common factor of 5; b and ¢ a
common factor of 7; b and d a common factor of 11; and ¢ and d a common factor of 13. The simplest way
to accomplish thisistolet a =2-3-5=30;b6=2-7-11=154; ¢c=3-7-13=273;and d=5-11-13 = 715.
The numbers are mutually relatively prime, since no number is a factor of all of them (indeed, each prime is
a factor of only two of them). Many other examples are possible, of course.

If £ =3 (mod 9), then x = 3 + 9¢ for some integer ¢. In particular this equation tells us that 3|z. On the
other hand the first congruence says that * = 2 4+ 6s = 2 + 3 - (2s) for some integer s, which implies that
the remainder when z is divided by 3 is 2. Obviously these two conclusions are inconsistent, so there is no
simultaneous solution to the two congruences.

a) There are two things to prove here. First suppose that ged(mi, me)| a1 —as; say a1 —as = k-ged(my, m2).
By Theorem 6 in Section 4.3, there are integers s and ¢ such that ged(my, ms2) = smq+tms. Multiplying both
sides by k and substituting into our first equation we have a; — ay = ksmy + ktmso, which can be rewritten
as a; — ksmy = ag + ktms. This common value is clearly congruent to a; modulo m; and congruent to as
modulo ms, so it is a solution to the given system. Conversely, suppose that there is a solution x to the
system. Then x = a1 + smy1 = as + tmo for some integers s and ¢. This says that a; — ay = tmo — sm; .
But ged(mg,ms) divides both m; and msy and therefore divides the right-hand side of this last equation.
Therefore it also divides the left-hand side, a; — ao, as desired.

b) We follow the idea sketched in Exercises 29 and 30 of Section 4.4. First we show that if ¢ = b (mod m;)
and a = b (mod my), then a = b (mod lem(m,msy)). The first hypothesis says that m; | a — b; the second
says that mg |a—b. Therefore a —b is a common multiple of m; and mso. If a —b were not also a multiple of
lem(mq,ms), then (a—b) mod lem(my, mg) would be a common multiple as well, contradicting the definition
of lem(my, ma). Therefore a — b is a multiple of lem(mq,mg), i.e., a = b (mod lem(mq,m2)). Now suppose
that there were two solutions to the given system of congruences. By what we have just proved, since these
two solutions are congruent modulo m; (since they are both congruent to a;) and congruent modulo ms
(since they are both congruent to as), they must be congruent to each other modulo lem(mq,ms). That is
precisely what we wanted to prove.

Note that the prime factorization of 35 is 5-7. So it suffices to show that 5|n'? —1 and 7|n'?—1 for integers
n relatively prime to 5 and 7. For such integers, Fermat’s little theorem tells us that n* = 1 (mod 5) and
n® =1 (mod 7). Then we have n'2 —1=(n*)3-1=13-1=0 (mod 5) and n'? - 1= 052 -1=12-1=
0 (mod 7).

In each case we just compute (a; + az + -+ ai3) + 3(az + a4 + - - + a12) mod 10 to make sure that it
equals 0.
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a) (9+84+0+3+0+7+1)+3(7T+0+7+24+6+9) mod 10 = 1; invalid
b) (94+8+4+4+4+24+1)+3(7T+04+5+2+5+1) mod 10 = 2; invalid
c) (9+8+1+14+8+1+0)+3(7+3+6+4+4+0) mod 10 = 0; valid
d) 9+8+2+14+04+74+9)+3(7+0+0+1+1+9) mod 10 =0; valid

If two digits in odd locations, or two digits in even locations, are transposed, then the sum is the same, so this
error will not be detected.

Because 3, 7, and 1 are all relatively prime to 10, changing a single digit to a different value will change
the sum modulo 10 and the congruence will no longer hold. Transposition errors involving just d;, d4, and
d7 (and similarly for transpositions within {ds,ds,ds} or within {ds,dgs,dg}) clearly cannot be detected. If a
transposition error occurs between two digits in different groups, it will be detected if the difference between
the transposed values is not 5 but will not be detected if it is (i.e., transposing a 1 with a 6, or a 2 with a 7,
and so on). To see why this is true in one case (the other cases are similar), suppose that dy =2 and dy =y
are interchanged. Then the sum is increased by 3(y — z) + 7(x — y) = 4(x — y). This will be 0 modulo 10 if
and only if 4(x — y) is not a multiple of 10, which is equivalent to & — y not being a multiple of 5.

a) The seed is 23 (X); adding this mod 26 to the first character of the plaintext, 13 (N), gives 10, which is K.
Therefore the first character of the ciphertext is K. The next character of the keystream is the aforementioned
13 (N); add this to O (14) to get 1 (B), so the next character of the ciphertext is B. We continue in this
manner, producing the encrypted message KBK A LAL XBUQ XH RHGKLH.

b) Again the seed is 23 (X); adding this mod 26 to the first character of the plaintext, 13 (N), gives 10,
which is K. Therefore the first character of the ciphertext is K. The next character of the keystream is the
aforementioned K (10); add this to O (14) to get 24 (Y), so the next character of the ciphertext is Y. We
continue in this manner, producing the encrypted message KYU CU NUY RZLP IW ZDFNQU.
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CHAPTER 5
Induction and Recursion

SECTION 5.1 Mathematical Induction

Important note about notation for proofs by mathematical induction: In performing the inductive
step, it really does not matter what letter we use. We see in the text the proof of P(k) — P(k + 1); but it
would be just as valid to prove P(n) — P(n+ 1), since the k in the first case and the n in the second case
are just dummy variables. We will use both notations in this Guide; in particular, we will use k for the first
few exercises but often use n afterwards.

2. We can prove this by mathematical induction. Let P(n) be the statement that the golfer plays hole n. We
want to prove that P(n) is true for all positive integers n. For the basis step, we are told that P(1) is true.
For the inductive step, we are told that P(k) implies P(k + 1) for each k& > 1. Therefore by the principle of
mathematical induction, P(n) is true for all positive integers n.

4. a) Plugging in n = 1 we have that P(1) is the statement 1° = [1-(1+1)/2]2.
b) Both sides of P(1) shown in part (a) equal 1.
c¢) The inductive hypothesis is the statement that
k(k+1) ) 2
2
d) For the inductive step, we want to show for each k > 1 that P(k) implies P(k + 1). In other words, we

want to show that assuming the inductive hypothesis (see part (c)) we can prove

(k:+1)(k+2)>2.

13+23+~-~+k3:(

[13+23+~-~+k:3]+(k:+1)3=( 5

e) Replacing the quantity in brackets on the left-hand side of part (d) by what it equals by virtue of the
inductive hypothesis, we have

as desired.

f) We have completed both the basis step and the inductive step, so by the principle of mathematical induction,
the statement is true for every positive integer n.

6. The basis step is clear, since 1-1! = 2! — 1. Assuming the inductive hypothesis, we then have
IT-+2-204+ -+ k- Kl+k+D) -+ D) =F(+D) =14+ (k+1) (K+1)!
=k+DI(1+k+1)—-1=(k+2)!-1,

as desired.

8. The proposition to be proved is P(n):
1— (_7)n+1

2-2.7T+2-7°— . 42-(=T)" = 1
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In order to prove this for all integers n > 0, we first prove the basis step P(0) and then prove the inductive
step, that P(k) implies P(k + 1). Now in P(0), the left-hand side has just one term, namely 2, and the
right-hand side is (1 —(—=7)')/4 = 8/4 = 2. Since 2 = 2, we have verified that P(0) is true. For the inductive
step, we assume that P(k) is true (i.e., the displayed equation above), and derive from it the truth of P(k+1),
which is the equation

1— (_7)(k+1)+1

—

To prove an equation like this, it is usually best to start with the more complicated side and manipulate it until

we arrive at the other side. In this case we start on the left. Note that all but the last term constitute precisely
the left-hand side of P(k), and therefore by the inductive hypothesis, we can replace it by the right-hand side
of P(k). The rest is algebra:

1 — (=7)kt1
[2-2-7T+2.- 72— 42 (=) + 2. (=7 = %Jrz(—?)k“
1= (=T 48 (—T)k !
N 4
1T (=R
- 4
17 (=M
N 4
1— (_7)(k+1)+1
= #.

a) By computing the first few sums and getting the answers 1/2, 2/3, and 3/4, we guess that the sum is
n/(n+1).
b) We prove this by induction. It is clear for n = 1, since there is just one term, 1/2. Suppose that

1-2 2-3 k(k+1) k+1°
We want to show that
1 N 1 . 1 N 1 k+1
1-2 2-3 k(k+1)]  (E+1)(k+2) k+2°

Starting from the left, we replace the quantity in brackets by k/(k + 1) (by the inductive hypothesis), and
then do the algebra
k 1 B +2k4+1 0 k41
il krDGE+T2) GrDE+2) kr2

yielding the desired expression.

We proceed by mathematical induction. The basis step (n = 0) is the statement that (—1/2)° = (2+1)/(3-1),
which is the true statement that 1 = 1. Assume the inductive hypothesis, that

i (%)J _ 2k+13_~._2(k_1)k

We want to prove that

k41 1\7 B ok+2 | (_1)k+1
> -3) = —
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Split the summation into two parts, apply the inductive hypothesis, and do the algebra:

B -5 ()

§=0 Jj=0

9k+1 + (_1)k N (_1)k+1
3. 9k ok+1
9k+2 +2(_1)k 3(_1)k+1
3. ok+1 3. 9k+1
9k+2 4 (L1)k+1
3. ok+1
For the last step, we used the fact that 2(—1)F = —2(—1)k+1.

14. We proceed by induction. Notice that the letter k has been used in this problem as the dummy index of
summation, so we cannot use it as the variable for the inductive step. We will use n instead. For the basis
step we have 1-2! = (1 —1)2'*! 42, which is the true statement 2 = 2. We assume the inductive hypothesis,
that

S ke2b=m-12"t 42,
k=1

and try to prove that

n+1
S k-2k=n-2vT 42,
k=1
Splitting the left-hand side into its first n terms followed by its last term and invoking the inductive hypothesis,
we have
n+1

S ko2k= (Zka’“) Fn+1)2" = (n—1)2" 424 (n+ 120 =2p . 27 L2 =p .22 49
k=1 k=1
as desired.

16. The basis step reduces to 6 = 6. Assuming the inductive hypothesis we have
1-2:3+2-3-44+--4+kk+DE+2)+(k+1D(k+2)(k+3)
E(k+1)(k+2)(k+3)

_ _ +(k+1)(k+2)(k+3)

=(k+1)(k+2)(k+3) (g +1)

(k+1)(k + 2)(k + 3)(k + 4)
. .

18. a) Plugging in n = 2, we see that P(2) is the statement 2! < 22.
b) Since 2! = 2, this is the true statement 2 < 4.
c¢) The inductive hypothesis is the statement that k! < k*.
d) For the inductive step, we want to show for each k > 2 that P(k) implies P(k + 1). In other words, we
want to show that assuming the inductive hypothesis (see part (c)) we can prove that (k+1)! < (k -+ 1)*+1.
e) (k+ 1) =(k+1Dk! < (k+1kF < (k+1)(k+1)F = (k+1)k!
f) We have completed both the basis step and the inductive step, so by the principle of mathematical induction,
the statement is true for every positive integer n greater than 1.

20. The basis step is n = 7, and indeed 37 < 7!, since 2187 < 5040. Assume the statement for k. Then
3+ =3.38 < (k+1)-3* < (k+1) k! = (k+1)!, the statement for k + 1.
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A little computation convinces us that the answer is that n? < n! for n =0, 1, and all n > 4. (Clearly the
inequality does not hold for n =2 or n = 3.) We will prove by mathematical induction that the inequality
holds for all n > 4. The basis step is clear, since 16 < 24. Now suppose that n2 <nl! for a given n > 4. We
must show that (n +1)? < (n+ 1)!. Expanding the left-hand side, applying the inductive hypothesis, and
then invoking some valid bounds shows this:

n+2n+1<n'+2n+1
<nl+2n+n=n!+3n
<nl4+n-n<n'4+n-n

=m+n!=mn+1)

The basis step is clear, since 1/2 < 1/2. We assume the inductive hypothesis (the inequality shown in the
exercise) and want to prove the similar inequality for n+ 1. We proceed as follows, using the trick of writing
1/(2(n+1)) in terms of 1/(2n) so that we can invoke the inductive hypothesis:
1 1 2n
2(n+1) 2n 2(n+1)
<1'3~5~~~(2n—1)) 2n

= 2.4-.2n 2(n + 1)
_1:35---(2n-1) 2n+1
= 2.4...2n 2(n + 1)

1-3:5---(2n—1)- (2n+1)
2.4--2n-2(n+1)

One can get to the proof of this by doing some algebraic tinkering. It turns out to be easier to think about the
given statement as na™ !(a —b) > a™ — b". The basis step (n = 1) is the true statement that a —b > a —b.
Assume the inductive hypothesis, that ka*~!(a—b) > a*—b*; we must show that (k-+1)a*(a—b) > aF+1—pF+1.
We have

(k+1)af(a—b)=k-a-a"'(a—b)+ a"(a —b)

> a(a® — b*) 4+ a*(a - b)
=a" ! — ab® + aF L —bak .
To complete the proof we want to show that a*t' — ab® + a1 — ba® > a*t! — p*+1. This inequality is

equivalent to a**1 — ab® — ba® + b*+1 > 0, which factors into (a* — b*)(a — b) > 0, and this is true, because

we are given that a > b.

The base case is n = 3. We check that 42 —7-44 12 = 0 is nonnegative. Next suppose that n? —7n+12 > 0;
we must show that (n+1)2 —7(n+1) + 12 > 0. Expanding the left-hand side, we obtain n? +2n+1—Tn —
7+12 = (n2 —7Tn+12) + (2n — 6). The first of the parenthesized expressions is nonnegative by the inductive
hypothesis; the second is clearly also nonnegative by the assumption that n is at least 3. Therefore their sum
is nonnegative, and the inductive step is complete.

The statement is true for n = 1, since H; =1 = 2-1—1. Assume the inductive hypothesis, that the statement
is true for n. Then on the one hand we have

Hi+Ho+ - +H,+Hps1=n+1)H, —n+ Hy41

1
n+1

1
— (n+2)H, —n+ —
(n+2) nt o
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and on the other hand

(n+2)Hpy1 —(n+1)=(n+2) (HnJrL) —(n+1)

n+1
n+2
:(n+2)Hn+—n+l—(n+1)
1
= 2)H, +1+ —— —n—1
(n+2)H, + +n+1 n

1
(n+2) nt o

That these two expressions are equal was precisely what we had to prove.

The statement is true for the base case, n = 0, since 3 | 0. Suppose that 3 | (k% + 2k). We must show that
3] ((k+1)*>+2(k+1)). If we expand the expression in question, we obtain k3 + 3k? + 3k + 1 + 2k + 2 =
(k3+42k)+3(k?+k+1). By the inductive hypothesis, 3 divides k34 2k, and certainly 3 divides 3(k%+k+1),
so 3 divides their sum, and we are done.

The statement is true for the base case, n = 0, since 6 | 0. Suppose that 6 | (n®> — n). We must show that
6| ((n+1)*—(n+1)). If we expand the expression in question, we obtain n® +3n? +3n+1-n—1=
(n® —n) + 3n(n + 1). By the inductive hypothesis, 6 divides the first term, n® — n. Furthermore clearly
3 divides the second term, and the second term is also even, since one of n and n + 1 is even; therefore 6
divides the second term as well. This tells us that 6 divides the given expression, as desired. (Note that here
we have, as promised, used n as the dummy variable in the inductive step, rather than k.)

It is not easy to stumble upon the trick needed in the inductive step in this exercise, so do not feel bad
if you did not find it. The form is straightforward. For the basis step (n = 1), we simply observe that
41 4 521-1 — 16 4+ 5 = 21, which is divisible by 21. Then we assume the inductive hypothesis, that
47+l 4 52n—1 g divisible by 21, and let us look at the expression when n + 1 is plugged in for n. We want
somehow to manipulate it so that the expression for n appears. We have

AHDHL | 5211 _ g gntl 4 o5 5201

=4-4" (44 21) 521
= 4(4" 1 45271 21 520

Looking at the last line, we see that the expression in parentheses is divisible by 21 by the inductive hypothesis,
and obviously the second term is divisible by 21, so the entire quantity is divisible by 21, as desired.

The basis step is trivial, as usual: A; C B; implies that U;:l A; C U;:l Bj because the union of one set is
itself. Assume the inductive hypothesis that if A; C B; for j = 1,2,...,k, then U?=1 A; C U§=1 Bj. We
want to show that if A; C B; for j =1,2,...,k+1, then Ufill A; C fill
subset of another we show that an arbitrary element of the first set must be an element of the second set. So
let z € Ufill A= (Uf:1 Aj> U Agyq1. Either z € U?:l Aj or x € Ap41. In the first case we know by the

Bj. To show that one set is a

inductive hypothesis that x € U§:1 Bj; in the second case, we know from the given fact that Api1 € Bri1
that « € By41. Therefore in either case x € <U§:1 Bj) UBgy1 = Uf;l B;.
This is really easier to do directly than by using the principle of mathematical induction. For a noninduc-

tive proof, suppose that x € U?:l A;. Then z € A; for some j between 1 and n, inclusive. Since A; C Bj,
we know that « € B;. Therefore by definition, x € U;L:1 B;.

If n = 1 there is nothing to prove, and the n = 2 case is the distributive law (see Table 1 in Section 2.2).
Those take care of the basis step. For the inductive step, assume that

(A1NnAsn---NA,)UB=(A1UB)N(A2UB)N---N (4, UB);
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we must show that
(A4 NAsnN---NA,NA1)UB=(A4 UB)N(AUB)N---N(A4,UB)N(A,+1 UB).
We have
(A1NnAsn---NA, NA 1) UB=((A1NAsN---NA,)NA,+1)UB
=((4NA:nN---NA,)UB)N (A1 UDB)
=4 UB)N(A2UB)N---N(A,UB)N(Ap+1UB).
The second line follows from the distributive law, and the third line follows from the inductive hypothesis.

If n =1 there is nothing to prove, and the n = 2 case says that (A; N B) N (A2 N B) = (A; N A3) N B, which
is certainly true, since an element is in each side if and only if it is in all three of the sets A;, Ay, and B.
Those take care of the basis step. For the inductive step, assume that

(A, —B)Nn(Ay—B)Nn---N(4,—B)=(A1nNAnN---NA,) — B;
we must show that
(A1 —=B)Nn(A2—B)n---N(A, —B)N(Apt1—B)=(A1NnAsnN---NA, NA,+1) — B.
We have
(A —-B)n(A2—B)n---Nn(A,—B)N(4,+1 — B)

=(A1—B)Nn(A2—B)n---N (4, —B))N (441 — B)
=((41NAsNn---NA,)—B)N(4,+1) — B)
=(A1NAnN---NA,NA,1)— B.

The third line follows from the inductive hypothesis, and the fourth line follows from the n = 2 case.

If n = 1 there is nothing to prove, and the n = 2 case says that (4; N B)U (A2 N B) = (4; U A3) N B, which

is the distributive law (see Table 1 in Section 2.2). Those take care of the basis step. For the inductive step,

assume that

(A1 - B)U(A2—B)U---U(A, —B)=(A1UAU---UA,) — B;
we must show that
(Ai;—B)U(A2—B)U---U(A, —B)U(Ap41 —B)=(A1UAU---UA,UA,1) — B.
We have
(A —B)U(Ay—B)U---U(A,—B)U (4,41 — B)

=(A4-B)U(A2—-B)U---U(4, - B))U (A1 — B)
=((AHUAU---UA,) - B)U(4,41) — B)
=(A4UAU---UA,UA,+1)— B.

The third line follows from the inductive hypothesis, and the fourth line follows from the n = 2 case.

This proof will be similar to the proof in Example 10. The basis step is clear, since for n = 3, the set
has exactly one subset containing exactly three elements, and 3(3 — 1)(3 — 2)/6 = 1. Assume the inductive
hypothesis, that a set with n elements has n(n — 1)(n — 2)/6 subsets with exactly three elements; we want
to prove that a set S with n + 1 elements has (n + 1)n(n — 1)/6 subsets with exactly three elements. Fix
an element a in S, and let T be the set of elements of S other than a. There are two varieties of subsets
of S containing exactly three elements. First there are those that do not contain a. These are precisely the
three-element subsets of T', and by the inductive hypothesis, there are n(n — 1)(n — 2)/6 of them. Second,
there are those that contain a together with two elements of T'. Therefore there are just as many of these
subsets as there are two-element subsets of T'. By Exercise 45, there are exactly n(n—1)/2 such subsets of T';
therefore there are also n(n—1)/2 three-element subsets of S' containing a. Thus the total number of subsets
of S containing exactly three elements is (n(n — 1)(n — 2)/6) + n(n — 1)/2, which simplifies algebraically to
(n+1)n(n—1)/6, as desired.
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We will show that any minimum placement of towers can be transformed into the placement produced by the
algorithm. Although it does not strictly have the form of a proof by mathematical induction, the spirit is
the same. Let s1 < so < -+ < s be an optimal locations of the towers (i.e., so as to minimize k), and let
t1 < tg < --- < t; be the locations produced by the algorithm from Exercise 47. In order to serve the first
building, we must have s; < a1 +1=1t;. If s7 # t1, then we can move the first tower in the optimal solution
to position ¢; without losing cell service for any building. Therefore we can assume that s; = t;. Let x;
be smallest location of a building out of range of the tower at s;; thus z; > s; + 1. In order to serve that
building there must be a tower s; such that s; < x; +1 =1ty. If i > 2, then towers at positions sy through
s;—1 are not needed, a contradiction. As before, it then follows that we can move the second tower from s
to to. We continue in this manner for all the towers in the given minimum solution; thus k£ =[. This proves
that the algorithm produces a minimum solution.

When n = 1 the left-hand side is 1, and the right-hand side is (1 + 3)?/2 = 9/8. Thus the basis step was

wrong.

We prove by mathematical induction that a function f: A — {1,2,...,n} where |A| > n cannot be one-to-
one. For the basis step, n =1 and |A| > 1. Let = and y be distinct elements of A. Because the codomain
has only one element, we must have f(xz) = f(y), so by definition f is not one-to-one. Assume the inductive
hypothesis that no function from any A to {1,2,...,n} with |A| > n is one-to-one, and let f be a function
from A to {1,2,...,n,n+ 1}, where |A| > n+ 1. There are three cases. If n 4+ 1 is not in the range of f,
then the inductive hypothesis tells us that f is not one-to-one. If f(x) = n + 1 for more than one value of
x € A, then by definition f is not one-to-one. The only other case has f(a) = n+ 1 for exactly one element
acA. Let A’ =A—{a}, and consider the function f’ defined as f restricted to A’. Since |A’| > n, by the
inductive hypothesis f’ is not one-to-one, and therefore neither is f.

The base case is n = 1. If we are given a set of two elements from {1,2}, then indeed one of them divides the
other. Assume the inductive hypothesis, and consider a set A of n + 2 elements from {1,2,...,2n,2n + 1,
2n+2}. We must show that at least one of these elements divides another. If as many as n+1 of the elements
of A are less than 2n + 1, then the desired conclusion follows immediately from the inductive hypothesis.
Therefore we can assume that both 2n + 1 and 2n 4+ 2 are in A, together with n smaller elements. If n + 1
is one of these smaller elements, then we are done, since n + 1|2n + 2. So we can assume that n+ 1 ¢ A.
Now apply the inductive hypothesis to B =A — {2n+ 1,2n + 2} U {n + 1}. Since B is a collection of n + 1
numbers from {1,2,...,2n}, the inductive hypothesis guarantees that one element of B divides another. If
n + 1 is not one of these two numbers, then we are done. So we can assume that n + 1 is one of these two
numbers. Certainly n + 1 can’t be the divisor, since its smallest multiple is too big to be in B, so there is
some k € B that divides n+ 1. But now k& and 2n 4+ 2 are numbers in A, with &k dividing n+ 2, and we are
done. An alternative proof of this theorem is given in Example 11 of Section 6.2.

There is nothing to prove in the base case, n = 1, since A = A. For the inductive step we just invoke the
inductive hypothesis and the definition of matrix multiplication:

n+1 _ n__ |@ 0 a” 0
ateanr= [0 )

_la-a™+0-0 a-0+0-0"] [a™™ 0
S {0-a™+b-0 0-04+b-0"| | O prtt

The basis step is trivial, since we are already given that AB = BA . Next we assume the inductive hypothesis,
that AB™ = B"A, and try to prove that AB"*! = B"t!A. We calculate as follows: AB"*! = AB"B =
B"AB = B"BA = B"*!A. Note that we used the definition of matrix powers (that B"*! = B"B), the
inductive hypothesis, and the basis step.
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This is identical to Exercise 43, with V replacing U, A replacing N, and — replacing complementation. The
basis step is trivial, since it merely says that —p; is equivalent to itself. Assuming the inductive hypothesis,
we look at —(p1 Vpa V- -Vp, Vppi1). By De Morgan’s law (grouping all but the last term together) this is the
same —(p1 Vp2 V-V p,)A—ppt1. But by the inductive hypothesis, this equals, —=p1 A=pa A+ A=pp Apry1,
as desired.

The statement is true for n = 1, since 1 line separates the plane into 2 regions, and (12 + 1+ 2)/2 = 2.
Assume the inductive hypothesis, that n lines of the given type separate the plane into (n?+n+2)/2 regions.
Consider an arrangement of n + 1 lines. Remove the last line. Then there are (n? +n + 2)/2 regions by
the inductive hypothesis. Now we put the last line back in, drawing it slowly, and see what happens to the
regions. As we come in “from infinity,” the line separates one infinite region into two (one on each side of
it); this separation is complete as soon as the line hits one of the first n lines. Then, as we continue drawing
from this first point of intersection to the second, the line again separates one region into two. We continue
in this way. Every time we come to another point of intersection between the line we are drawing and the
figure already present, we lop off another additional region. Furthermore, once we leave the last point of
intersection and draw our line off to infinity again, we separate another region into two. Therefore the number
of additional regions we formed is equal to the number of points of intersection plus one. Now there are n
points of intersection, since our line must intersect each of the other lines in a distinct point (this is where
the geometric assumptions get used). Therefore this arrangement has n + 1 more points of intersection than
the arrangement of n lines, namely ((n”+4 n+2)/2) 4+ (n + 1), which, after a bit of algebra, reduces to
((n+1)*+ (n+1) 4+ 2) /2, exactly as desired.

For the base case n = 1 there is nothing to prove. Assume the inductive hypothesis, and suppose that we
are given p|ajas---anany1. We must show that p|a; for some i. Let us look at ged(p,ajas---ay,). Since
the only divisors of p are 1 and p, this is either 1 or p. If it is 1, then by Lemma 2 in Section 4.3, we have
plans1 (here a =p, b=ajas - ay, and ¢ = a,41), as desired. On the other hand, if the greatest common
divisor is p, this means that p|ajas---a,. Now by the inductive hypothesis, p|a; for some i < n, again as
desired.

Suppose that a statement VnP(n) has been proved by this method. Let S be the set of counterexamples
to P,ie,let S={n|-P(n)}. We will show that S =@. If S # @, then let n be the minimum element
of S (which exists by the well-ordering property). Clearly n # 1 and n # 2, by the basis steps of our proof
method. But since n is the least element of S and n > 3, we know that P(n — 1) and P(n — 2) are true.
Therefore by the inductive step of our proof method, we know that P(n) is also true. This contradicts the
choice of n. Therefore S = @, as desired.

The basis step is n = 1 and n = 2. If there is one guest present, then he or she is vacuously a celebrity,
and no questions are needed; this is consistent with the value of 3(n — 1). If there are two guests, then it is
certainly true that we can determine who the celebrity is (or determine that neither of them is) with three
questions. In fact, two questions suffice (ask each one if he or she knows the other). Assume the inductive
hypothesis that if there are k guests present (k > 2), then we can determine whether there is a celebrity
with at most 3(k — 1) questions. We want to prove the statement for k + 1, namely, if there are k + 1 at
the party, then we can find the celebrity (or determine that there is none) using 3k questions. Let Alex and
Britney be two of the guests. Ask Alex whether he knows Britney. If he says yes, then we know that he is
not a celebrity. If he says no, then we know that Britney is not a celebrity. Without loss of generality, assume
that we have eliminated Alex as a possible celebrity. Now invoke the inductive hypothesis on the k guests
excluding Alex, asking 3(k — 1) questions. If there is no celebrity, then we know that there is no celebrity at
our party. If there is, suppose that it is person = (who might be Britney or might be someone else). We then
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ask two more questions to determine whether z is in fact a celebrity; namely ask Alex whether he knows =z,
and ask x whether s/he knows Alex. Based on the answers, we will now know whether x is a celebrity for the
whole party or there is no celebrity present. We have asked a total of at most 1+ 3(k — 1)+ 2 = 3k questions.
Note that in fact we did a little better than 3(n — 1); because only two questions were needed for n = 2, only
3(n —1) — 1 =3n —4 questions are needed in the general case for n > 2.

We prove this by mathematical induction. The basis step, G(4) = 2-4 —4 = 4 was proved in Exercise 69. For
the inductive step, suppose that when there are k callers, 2k — 4 calls suffice; we must show that when there
are k + 1 callers, 2(k + 1) — 4 calls suffice, that is, two more calls. It is clear from the hint how to proceed.
For the first extra call, have the (k+ 1) person exchange information with the k*® person. Then use 2k — 4
calls for the first k& people to exchange information. At that point, each of them knows all the gossip. Finally,
have the (k+ 1)** person again call the £*" person, at which point he will learn the rest of the gossip.

We follow the hint. If the statement is true for some value of n, then it is also true for all smaller values
of n, because we can use the same arrangement among those smaller numbers. Thus is suffices to prove the
statement when n is a power of 2. We use mathematical induction to prove the result for 2¢. If k = 0 or
k = 1, there is nothing to prove. Notice that the arrangement 1324 works for k£ = 2. Assume that we can
arrange the positive integers from 1 to 2* so that the average of any two of these numbers never appears
between them. Arrange the numbers from 1 to 25+1 by taking the given arrangement of 2¥ numbers, replacing
each number by its double, and then following this sequence with the sequence of 2¥ numbers obtained from
these 2¥ even numbers by subtracting 1. Thus for k¥ = 3 we use the sequence 1324 to form the sequence
26481537. This clearly is a list of the numbers from 1 to 2¥+!. The average of an odd number and an even
number is not an integer, so it suffices to shows that the average of two even numbers and the average of
two odd numbers in our list never appears between the numbers being averaged. If the average of two even
numbers, say 2a and 2b, whose average is a + b, appears between the numbers being averaged, then by the
way we constructed the sequence, there would have been a similar violation in the 2% list, namely, (a + b)/2
would have appeared between a and b. Similarly, if the average of two odd numbers, say 2c — 1 and 2d — 1,
whose average is c+d— 1, appears between the numbers being averaged, then there would have been a similar
violation in the 2F list, namely, (¢ + d)/2 would have appeared between ¢ and d.

a) The basis step works, because for n = 1 the statement 1/2 < 1/+/3 is true. The inductive step would
require proving that
1 2n+1 1

: < .
V3n 2n+2 3(n+1)

Squaring both sides and clearing fractions, we see that this is equivalent to 4n? + 4n + 1 < 4n? + 4n, which
of course is not true.
b) The basis step works, because the statement 3/8 < 1/v/7 is true. The inductive step this time requires

proving that
1 2n+1 1

: < .
V3n+1 2n+2 3(n+1)+1

A little algebraic manipulation shows that this is equivalent to

12n3 4 28n2 + 19n + 4 < 12n3 + 28n2 + 20n + 4,

which is true.

The upper left 4 x 4 quarter of the figure given in the solution to Exercise 77 gives such a tiling.
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a) Every 3 x 2k board can be covered in an obvious way: put two pieces together to form a 3 x 2 rectangle,
then lay the rectangles edge to edge. In particular, for all » > 1 the 3 x 2™ rectangle can be covered.

b) This is similar to part (a). For all k > 1 it is easy to cover the 6 x 2k board, using two coverings of the
3 x 2k board from part (a), laid side by side.

c) A little trial and error shows that the 3! x 3! board cannot be covered. Therefore not all such boards can
be covered.

d) All boards of this shape can be covered for n > 1, using reasoning similar to parts (a) and (b).

This is too complicated to discuss here. For a solution, see the article by I. P. Chu and R. Johnsonbaugh,
“Tiling Deficient Boards with Trominoes,” Mathematics Magazine 59 (1986) 34-40. (Notice the variation in
the spelling of this made-up word.)

In order to explain this argument, we label the squares in the 5 x 5 checkerboard 11, 12, ..., 15, 21, ..., 25,
..., b1, ..., b5, where the first digit stands for the row number and the second digit stands for the column
number. Also, in order to talk about the right triomino (L-shaped tile), think of it positioned to look like the
letter L; then we call the square on top the head, the square in the lower right the tail, and the square in the
corner the corner. We claim that the board with square 12 removed cannot be tiled. First note that in order
to cover square 11, the position of one piece is fixed. Next we consider how to cover square 13. There are
three possibilities. If we put a head there, then we are forced to put the corner of another piece in square 15.
If we put a corner there, then we are forced to put the tail of another piece in 15, and if we put a tail there,
then square 15 cannot be covered at all. So we conclude that squares 13, 14, 15, 23, 24, and 25 will have to be
covered by two more pieces. By symmetry, the same argument shows that two more pieces must cover squares
31, 41, 51, 32, 42, and 52. This much has been forced, and now we are left with the 3 x 3 square in the lower
left part of the checkerboard to cover with three more pieces. If we put a corner in 33, then we immediately
run into an impasse in trying to cover 53 and 35. If we put a head in 33, then 53 cannot be covered; and if
we put a tail in 33, then 35 cannot be covered. So we have reached a contradiction, and the desired covering
does not exist.

SECTION 5.2 Strong Induction and Well-Ordering

Important note about notation for proofs by mathematical induction: In performing the inductive
step, it really does not matter what letter we use. We see in the text the proof of (Vj<k P(j)) — P(k+1);
but it would be just as valid to prove (Vj<n P(j)) — P(n + 1), since the k in the first case and the n in
the second case are just dummy variables. Furthermore, we could also take the inductive hypothesis to be
Vj<n P(j) and then prove P(n). We will use all three notations in this Guide.

. Let P(n) be the statement that the n'® domino falls. We want to prove that P(n) is true for all positive

integers n. For the basis step we note that the given conditions tell us that P(1), P(2), and P(3) are true.
For the inductive step, fix k£ > 3 and assume that P(j) is true for all 7 < k. We want to show that P(k+ 1)
is true. Since k > 3, k — 2 is a positive integer less than or equal to k, so by the inductive hypothesis we
know that P(k — 2) is true. That is, we know that the (k — 2)"® domino falls. We were told that “when a
domino falls, the domino three farther down in the arrangement also falls,” so we know that the domino in
position (k—2)4+3=k+1 falls. Thisis P(k+1).
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Note that we didn’t use strong induction exactly as stated in the text. Instead, we considered all the
cases n =1, n =2, and n = 3 as part of the basis step. We could have more formally included n = 2 and
n = 3 in the inductive step as a special case. Writing our proof this way, the basis step is just to note that
the first domino falls, so P(1) is true. For the inductive step, if k =1 or k = 2, then we are already told that
the second and third domino fall, so P(k + 1) is true in those cases. If k > 2, then the inductive hypothesis
tells us that the (k —2)" domino falls, so the domino in position (k —1) +2 =k + 1 falls.

4. a) P(18) is true, because we can form 18 cents of postage with one 4-cent stamp and two 7-cent stamps.
P(19) is true, because we can form 19 cents of postage with three 4-cent stamps and one 7-cent stamp. P(20)
is true, because we can form 20 cents of postage with five 4-cent stamps. P(21) is true, because we can form
20 cents of postage with three 7-cent stamps.

b) The inductive hypothesis is the statement that using just 4-cent and 7-cent stamps we can form j cents
postage for all j with 18 < j < k, where we assume that k > 21.

¢) In the inductive step we must show, assuming the inductive hypothesis, that we can form k + 1 cents
postage using just 4-cent and 7-cent stamps.

d) We want to form k + 1 cents of postage. Since k > 21, we know that P(k — 3) is true, that is, that we
can form k — 3 cents of postage. Put one more 4-cent stamp on the envelope, and we have formed k41 cents
of postage, as desired.

e) We have completed both the basis step and the inductive step, so by the principle of strong induction, the
statement is true for every integer n greater than or equal to 18.

6. a) We can form the following amounts of postage as indicated: 3 =3, 6 =3+3, 9=3+3+ 3, 10 = 10,
12=3+4+3+3+3,13=10+3,15=3+3+3+3+3,16=10+3+3, 18 =3+3+3+3+3+3,
19 =10+3+3+3, 20 = 10 + 10. By having considered all the combinations, we know that the gaps in
this list cannot be filled. We claim that we can form all amounts of postage greater than or equal to 18 cents
using just 3-cent and 10-cent stamps.

b) Let P(n) be the statement that we can form n cents of postage using just 3-cent and 10-cent stamps.
We want to prove that P(n) is true for all n > 18. The basis step, n = 18, is handled above. Assume that
we can form k cents of postage (the inductive hypothesis); we will show how to form k + 1 cents of postage.
If the k cents included two 10-cent stamps, then replace them by seven 3-cent stamps (7-3 = 2-1041).
Otherwise, k cents was formed either from just 3-cent stamps, or from one 10-cent stamp and k — 10 cents in
3-cent stamps. Because k > 18, there must be at least three 3-cent stamps involved in either case. Replace
three 3-cent stamps by one 10-cent stamp, and we have formed k + 1 cents in postage (10 =3-3 4+ 1).

c) P(n) is the same as in part (b). To prove that P(n) is true for all n > 18, we note for the basis step that
from part (a), P(n) is true for n = 18,19,20. Assume the inductive hypothesis, that P(j) is true for all j
with 18 < j < k, where k is a fixed integer greater than or equal to 20. We want to show that P(k + 1) is
true. Because k — 2 > 18, we know that P(k — 2) is true, that is, that we can form k — 2 cents of postage.
Put one more 3-cent stamp on the envelope, and we have formed k + 1 cents of postage, as desired. In this
proof our inductive hypothesis included all values between 18 and k inclusive, and that enabled us to jump
back three steps to a value for which we knew how to form the desired postage.

8. Since both 25 and 40 are multiples of 5, we cannot form any amount that is not a multiple of 5. So let’s
determine for which values of n we can form 5n dollars using these gift certificates, the first of which provides
5 copies of $5, and the second of which provides 8 copies. We can achieve the following values of n: 5 =15,
8§=8,10=5+4+5,13=8+5,15=5+5+5,16 =848, 18 =8+5+5,20=5+5+5+5+4+5, 21 =8+8+5,
23=8+5+5+5,24=84+8+8,26=5+5+5+5+5,20=8+8+5+5,28=8+5+5+5+35,
29 =8+4+8+8+5,30=5+5+5+5+5+5,31=84+8+5+5+5, 32 =8+8+8+ 8. By having
considered all the combinations, we know that the gaps in this list cannot be filled. We claim that we can
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form total amounts of the form 5n for all n > 28 using these gift certificates. (In other words, $135 is the
largest multiple of $5 that we cannot achieve.)

To prove this by strong induction, let P(n) be the statement that we can form 5n dollars in gift certificates
using just 25-dollar and 40-dollar certificates. We want to prove that P(n) is true for all n > 28. From our
work above, we know that P(n) is true for n = 28,29, 30,31, 32. Assume the inductive hypothesis, that P(j)
is true for all j with 28 < j < k, where k is a fixed integer greater than or equal to 32. We want to show
that P(k+1) is true. Because k —4 > 28, we know that P(k —4) is true, that is, that we can form 5(k —4)
dollars. Add one more $25-dollar certificate, and we have formed 5(k + 1) dollars, as desired.

We claim that it takes exactly n — 1 breaks to separate a bar (or any connected piece of a bar obtained by
horizontal or vertical breaks) into n pieces. We use strong induction. If n = 1, this is trivially true (one piece,
no breaks). Assume the strong inductive hypothesis, that the statement is true for breaking into k or fewer
pieces, and consider the task of obtaining k + 1 pieces. We must show that it takes exactly k breaks. The
process m